

V-Model Views

Dieter Scheithauer

INCOSE ESEP

CASSIDIAN

Rechliner Str.

85077 Manching - Germany

dieter.scheithauer@cassidian.com

Kevin Forsberg

INCOSE Pioneer and ESEP

OGR Systems

1390 Grizzly Road

Portola, California – USA

kforsberg@ogrsystems.com

Copyright © 2013 by Dieter Scheithauer and Kevin Forsberg. Published and used by INCOSE with permission.

Abstract. The V-model is the most popular iconic illustration within systems engineering.

Originally derived from the waterfall model to give a notion of a system's architecture, the

V-model today is used widely in systems engineering training, and for communicating systems

engineering ideas and concepts in the systems engineering community and beyond.

The contemporary understanding of the V-model is still based on definitions established more

than two decades ago. Since then, systems engineering has advanced in directions beyond the

systems engineering scenarios of the past. Systems-of-systems, systems engineering value

stream thinking, and systems engineering outreach into commercial sectors challenge the

current common interpretation of the V-model. It is the intention of this paper to establish a set

of consistent V-model views integrating central systems engineering concepts and maintaining

the central role of the V-model for communication within the systems engineering community

and beyond.

Introduction

Icons are a powerful means of communication. They ease orientation in public facilities like

airports, hotels, or train stations. As traffic signs, they help us to drive safely even when we

take unknown directions. Their shape itself is part of the message. When naming the shapes of

Figure 1 with the otherwise meaningless terms "omulvo" and "takete" most people will make

the same choice without hesitation (Köhler 1947).

Figure 1. Naming Shapes – "Omulvo" and "Takete" (Köhler 1947).

The most concise icon in systems engineering is the V. Not necessarily the more artistic

representation shown in the publications of Hal Mooz and Kevin Forsberg (Mooz and Forsberg

2001; Forsberg, Mooz and Cotterman 2005), but just two lines drawn on a piece of paper or on

a board as a sketch for expressing systems engineering concepts. But unlike the initial example

where just a phoneme is correlated with a graphical shape, the V is enriched with all the

systems engineering knowledge and experience of the observer. Due to its success, the V is

used to explain many ideas and concepts in systems engineering. On the downside,

inconsistencies are diluting more and more the communicative power of the V in systems

engineering, since many people are creating their own V icons to address their specific

situation.

It is the objective of this paper to propose a set of consistent V-model views in order to

maintain the V as the dominant icon to express systems engineering concepts. This includes

re-visiting the original definition of the V-model (Forsberg and Mooz 1991; Forsberg, Mooz

and Cotterman 2005) with respect to the advances in systems engineering achieved within the

last decade. Most notably, the following new concepts introduced to systems engineering have

an impact on a further evolution of the V-model: (1) the notion of systems-of-systems (Haskins

2010); (2) value stream thinking in systems engineering (Ohno 1987; Womack and Jones 1996

and 2003; McManus 2005; Scheithauer 2012); (3) the outreach of systems engineering into

commercial sectors.

Four consistent V-Model views are introduced by this paper:

 The Basic V expressing V-model fundamentals (see Figure 2)

 The Development V (see Figure 3)

 The Assurance V (see Figure 4)

 The Dynamic V (see Figure 5)

The first three views depict the overall systems engineering value stream, while the fourth view

indicates iterations that may be performed over the whole or over parts of the V-Model.

System Environment

System on Level 0

Overall Product

or Service

System on Level 1

Abstract System

System on Level 3

Abstract System

System on Level 2

System Elements on the

Implementation Level

S
ta

k
e

h
o

ld
e

r
N

e
e

d
s

Stakeholder Satisfaction

Logical Sequence

T
o
p
-D

o
w

n
 D

esig
n

B
o
tt
o
m

-U
p
 In

te
g
ra

ti
o
n

Figure 2. V-Model Fundamentals: The Basic V.

V-Model Legacy

According to Hal Mooz and Kevin Forsberg, the V-model has been invented twice in the late

1980's by NASA and in parallel by Kevin Forsberg and Hal Mooz (Forsberg and Mooz 1991).

The main characteristics of the V-model are:

 Horizontal layers in the V-Model provide a notion of the hierarchical levels of a system

architecture with the overall product or service under consideration at the top and with the

system elements on the implementation level at the bottom.

 The direction from left to right expresses the time line. Usually, sequential milestone events

structure the time continuum. Thus, the V-model expresses a sequential development

approach. Other development philosophies are shown by breaking up the V in parts to

provide examples for incremental and evolutionary development philosophies.

 A vertical line at the “time now” (not shown in the figures) will illustrate the critical

iterative character of the V model. These iterations are part of the systems engineering

process models that are not scaled temporally, but rather by events. While important to

understand that the on-core and off-core activities are part of the heart of the V model, they

are confusing when incorporated into a simple iconic model. For more detail see the earlier

papers (Breidenthal and Forsberg 2008; Forsberg, Mooz, and Cotterman 2005).

 Going down on the left leg stands for top-down design. Progress is shown as a continuum

of generated baselines.

 Proceeding up on the right leg means bottom-up system integration.

V-Model Weaknesses. From a today's point of advanced systems engineering knowledge, of

accumulated experience and of applying systems engineering beyond its original context, the

main characteristics of the V-Model may be challenged for the following weaknesses:

 Inventing new products and services deserves engineering activities regarding the

operational context first. In the details of the V depiction, as well as the various

architectural frame works (such as DoDAF, MoDAF, NAF) the system environment is

described as a separate architectural layer above the overall product or service finally

delivered to customers. Issues such as user needs and system affordability drive the

evolution of the system solution. However the V icon does not show this.

 The meaning of the lowest architectural level at the peak of the V-Model is not well

defined. General criteria for stopping the architectural system decomposition are as vague

as the definition of the term implementation. Considering an industrial culture based on

work-share and specialization in terms of commercial-off-the-shelf and non-development

items only falls somewhat short about the complexity of industries.

 Interpreting the left-to-right direction as time line supports pure sequential systems

engineering concepts, but introduces some twists for expressing re-work and iterative

approaches. First, design iterations over the whole or parts of the system architecture can

rarely be achieved at a single point in time. Re-working the design and creating updated

configuration baselines for affected systems and system elements interfere considerably

with development progress. As noted above, the activities off the core of the V are a vital

part of the real work and value imbedded in the V model (Breidenthal and Forsberg 2008).

The vertical iterations support iterative and agile development concepts, but the resulting

model is no longer a simple iconic Vee, and so it is not elaborated upon here. Second, the

need for re-work of the design due to system integration results is hidden despite the

tremendous challenges for managing corrective design and implementation activities in

order to maintain consistent configuration baselines of all affected systems and system

elements. Third, the linear mapping of the time line to life cycle phases disregards the

repetition of some engineering activities in several life cycle phases. And at forth, mapping

incremental or evolutionary development approaches to the V-model results in the

distortion of the iconic V without providing a generalized view representing all real-world

variations of pre-planned and event-driven iterations.

System Architecture Considerations

The system architecture of an overall system, e.g. products and services delivered to customers,

is defined for engineering purposes. The system architecture is developed to partition the

engineering effort according to a wide range of considerations including mastering system

complexity, involved application domains, and organizational capabilities and boundaries. In

Figure 2, the basic V-model is shown with the architectural system levels shown in horizontal

layers. The different architectural layers are described below.

Note that the terms system and system element are used below in a recursive pattern. A system

is decomposed into system elements on the next level that again can also be designated as

systems. In contradiction, ISO/IEC 15288-2008 favors a tree metaphor where the system

elements are the ultimate leaves of the tree (ISO and IEC 2008).

The System Environment. The upmost entry point of a system architecture is the system

environment in which the overall system is operated. The system environment is the part of the

surrounding world considered when engineering the overall system. In the end, customer and

user satisfaction depends on operating the overall system in its surrounding world. A number of

engineering activities are performed on the system environment. It has to be decided what is

taken as part of the system environment, and what is neglected leading to the definition of the

outer boundaries of the system environment. The system environment has to be understood in

terms of functions and architecture. Innovative and competitive ideas for capability

sustainment and enhancement beneficial to current and future customers have to be identified

to generate promising future business cases. The operational requirements allocated to the

overall system have to be developed. And, mission effectiveness and the system efficiency

including affordability of the overall system's operation in the surrounding world have to be

validated.

The Overall System. The overall system constitutes the product or service to be delivered

finally to the customers. It is designed to satisfy the operational requirements. The design is

expressed in terms of consistent and complementary system requirement, functional and

architectural views. Continuously performed validation activities provide the confidence that

stakeholder satisfaction is most likely. And, the verification of the overall integrated system

provides the evidence that system requirements are met and that customer contracts are

fulfilled.

Abstract Systems. System elements resulting from the overall system's decomposition are

abstractions of portions of the overall system. Therefore, they are designated as abstract

systems. Abstract system elements may be scoped according to functional considerations, or

following other segregation principles. The engineering of each abstract system element

demands a specific cooperation of multiple engineering disciplines with higher levels of

specialization on lower architectural system levels. Thus, the decomposition of the system

architecture leads to team structures and responsibility assignments within the engineering

organization. Engineering teams responsible for abstract systems actively contribute to satisfy

the stakeholder needs on the overall system. They are involved in the elicitation of stakeholder

requirements as they may understand some stakeholder needs inherited from higher level

systems in more detail and occasionally their design decisions may lead to additional

stakeholder requirements. Sometimes abstract system elements may have a corresponding

representation within the product structure as a particular physical entity.

For each abstract system element, the allocated requirements are interpreted in course of the

design. An abstract system element is defined by consistent and complementary requirement,

functional and architectural views. The methods and practices applied for the development of a

particular system element are selected according to the specific application domain. The

hand-over to the system elements on the next lower architectural level is accomplished again

by allocation of requirements that are feasible to be engineered and implemented on lower

architectural levels. All abstract system elements are engineered having the stakeholder

satisfaction with the overall system in its operational environment in mind, thus contributing to

the quality management goal of customer satisfaction (ISO 2008).

The number of abstract system levels in each branch of the system architecture may vary. Each

abstract system element has to add value to the overall system design in an effective and

efficient manner. In some cases, the overall system may be directly broken down into system

elements on the implementation level.

The Implementation Level. In contrast to the engineering of the abstract system elements, the

engineering of the system elements on the implementation level sets the focus on the system

requirements allocated to them without challenging the definition of the overall product or

service and its abstract system elements. They are not concerned anymore with the stakeholder

needs on the overall system. In many cases, system elements on the implementation level are

procured as standard or customized parts from other industrial organizations. For example, a

servo-hydraulic actuator is a system element on the implementation level for an aircraft

manufacturer. For the actuator supplier, the actuator is the overall product. The same is true for

the company providing a shut-off valve to the actuator manufacturer. Thus, the V-Model

becomes re-entrant recursively. In other cases, system elements engineered in-house may be

deemed to be on the implementation level like for example some electronic circuitry or basic

software code. But be aware about the reliance on supplies from other industries for procuring

for example electronic components or adequate compilers. In a sophisticated industrial culture

it may hard or nearly impossible to identify the true peak of the V.

The V-Model as Value Stream

The idea of anticipating the V-model as a value stream is obvious. However, interpreting the

left-to-right direction as timeline undermines this interpretation. The lean principle for flow

(Oppenheim 2011) includes the absence of backflow. Showing vertical iterations on the left leg

of the V to be performed at a single point in time, and hiding possible rework and redesign on

the right leg as background details (Forsberg, Mooz, and Cotterman 2005) demands some

twists in the reasoning to claim compatibility with all lean principles. This issue does not exist

when the left to right direction is interpreted as logical sequence for a single iteration on the

overall systems engineering value stream that may be performed on the whole or parts of the V

as later explained in the context of the Dynamic V (see Figure 5). This overall value stream

then may put the major emphasis on the hand-over of information between systems and their

system elements as shown in the Development V (see Figure 3)

Stakeholder Needs and Stakeholder Satisfaction. Stakeholder needs and stakeholder

satisfaction themselves are shown off-side the V as they are not direct products of the systems

engineering activities. The entry point for systems engineering is the elicitation of stakeholder

requirements. Traditionally, the terms stakeholder needs and stakeholder requirements are used

interchangeably in systems engineering (Haskins 2010). This position is currently changing.

ISO 29148 (ISO 2011) is aware of the difference between stakeholder needs and stakeholder

requirements, but still does not provide a proper definition of the term stakeholder needs.

It is the goal in systems engineering to satisfy all stakeholders concerned with the overall

system over its whole system life cycle. However, the whole system is invented for those

stakeholders that are concerned with the overall system during the in-service phase. For this

reason, stakeholder satisfaction is indicated on the right of the V on the architectural level of

the system environment in order to concentrate on essentials.

Logical Sequence. As stated above, interpreting the left-to-right direction as timeline prevents

the V from being interpreted as value stream according to lean principles (Womack and Jones

1996; Oppenheim 2011). This deficiency is cured when the left-to-right direction is interpreted

as logical sequence. Any re-work may then be expressed by moving back to the left. Thus, it

becomes visible at which stage of the engineering process the re-work has to start and which

system elements may be impacted by the changes.

Following this interpretation, the V expresses the overall systems engineering value stream. Of

course, the engineering of each system element follows an engineering value stream on its own

when widely managed independently. It is better to draw those value streams not in the shape

of a V as they do not express an architectural decomposition. In order to avoid overlaps

between the overall systems engineering value stream represented by the V and the engineering

value streams for developing particular system elements, the following V-model views

concentrate on global characteristics of the overall value stream.

S
ta

k
e

h
o

ld
e

r
N

e
e

d
s

Stakeholder Satisfaction

AR

AR

AR

AR

AR

IS

IS

IS

IS

IS

SR

SR

SR

SR

SR

SIP

SIP

SIP

SIP

AR Allocated Requirements IS Integrated System

SIP System Integration PlanningSR Stakeholder Requirements

Figure 3. The Development V.

Development Activities in the V-Model: The Development V

From Stakeholder Needs to Stakeholder Requirements. Stakeholders have needs, but they

are rarely conscious about all their needs. Stakeholders have expectations taken for granted.

Consequently, they will miss to talk about some important basic needs. Instead they will

emphasize felt deficiencies of current solutions and their wishes delighting them, if they would

become true. A systems engineer without knowledge of the stakeholder's domain of expertise

may be limited in the capability to transform all relevant stakeholder needs into stakeholder

requirements. In general, it may be better to accept that stakeholder needs may not always be

identified than postulating the identity of stakeholder needs and stakeholder requirements.

At the outset, stakeholder requirements on the system environment level have to provide a

comprehensive view on the capabilities from which the operational requirements for the

overall product or service are deduced. However, further stakeholder requirements may be

derived for the overall product and service as well as for all the abstract system elements.

Design decisions may lead to the identification of new stakeholders, additional needs from

known stakeholders, and already known needs may be better understood by engineers from

particular domains in charge for engineering specific logical system elements. Of course, it

may be assumed that the need and the effort for stakeholder requirement elicitation will fade

out with increasing architectural decomposition of the overall system into abstract system

elements.

The Requirement Cascade. On the left leg of the V, the information hand-over between a

system and its system elements on the next lower architectural level is facilitated by the

allocation of requirements defined by the engineering team in charge of developing these

requirements for the next lower architectural level. The engineering teams in charge of

developing the system elements will interpret the allocated requirements. They will then

generate consistent and complementary system requirement, functional and architectural

views. On one hand, they have to ensure that they satisfy the expectations communicated by the

requirements allocated to them. On the other hand, they also have to take care that their design

solution is feasible and implementable on all lower architectural levels. Finally, requirements

will be allocated to the system elements on the next lower architectural level. Note that the

requirements allocated from the system environment to the overall system are commonly

designated as operational requirements.

The hand-over of allocated requirements needs to be tightly controlled. First, the design of the

next upper level system needs to have achieved a known level of maturity. This does not

necessarily mean that the design has to be complete.

Second, a consistent configuration baseline of the next upper level system has to exist. Here, a

consistent configuration baseline is characterized by a set of referenced work products

describing the system requirement, functional and architectural views, and the allocated

requirements assigned to all the system elements at the next lower architectural level. All

content needs to be traceable and free of conflicts beyond the stated omissions and issues as

knowledgeable at the particular point in the systems engineering process.

And third, appropriate agreements of the involved engineering teams are made, for example in

the course of management reviews. At least three mandatory parties are involved in the

agreement process. The originators of the allocated requirements taken as input for the system

design have to assess, if their expectations are fulfilled by the system design. The engineering

design team of the particular system has to justify and defend their design decisions. The

engineering teams responsible for the system elements on the next lower architectural level

have to evaluate, if they have understood the requirements allocated to them and if the task is

feasible for them.

System Integration Planning. When designing the overall product or service, or any abstract

system element, the scope for system integration becomes clear as well. An overall system

integration concept considering the whole system architecture of the overall system or service

is generated. The demands for system integration of particular system elements are elaborated.

This includes the generation of assurance objectives as an engineering activity subsumed to be

represented by the left leg of the V. In order to provide a sound basis for preparing system

integration, the hand-over between system design and system integration needs to be controlled

by consistent configuration baselines again.

System integration planning may not only be performed on a per system element basis. In

many cases, it is worthwhile to define an overall system integration concept defining rules on

which level of the system architecture evidence for the fulfillment of certain categories of

system requirements is generated most efficiently. Although important, this consideration is

not addressed explicitly in the development V-model view.

Considering the lead time needed to provide all the system integration environments system

integration should start early. All the preparatory work on system integration is represented by

the right leg of the V as it does not interfere with the requirement cascade.

The System Integration Cascade. The actual system integration is dependent on the recursive

bottom-up hand-over of integrated system elements up to the overall product or service. This

hand-over is shown on the right leg of the V. In cases in which the overall product or service is

one of a kind, the integration of the overall product or service in the system environment may

be performed as a systems engineering activity. In all other cases, it is unlikely that it is a

systems engineering responsibility to perform the transition into the in-service phase.

As a minimum, the following controls are necessary for evolving the system integration

cascade: First, the integration activities on the respective system element need to have achieved

a certain level of known maturity before they are actually integrated into the next upper level

system. Second, the integrated system element has to be identified by a consistent

configuration baseline with all omissions and deficiencies clearly stated in order to avoid

damages and nuisance work when the integration of the next upper level system is commenced.

And third, appropriate agreements of the involved engineering teams have been made, for

example in the course of management reviews.

Assurance Activities in the V-Model: The Assurance V

S

ta
k

e
h

o
ld

e
r

N
e

e
d

s

Stakeholder Satisfaction

V1

V1

V1

V1

V2

V2

V2

V2

V2

V5
V6

V4 V4 V4 V4

V3

V3

V3

V3

VER

VER

VER

VER

VER

V1

V2

V3 Verification

Validation of Stakeholder Requirements

Validation of Allocated Requirements

Validation of System Element’s Design

V4 Validation of Virtually Integrated System

V5 Operational Validation

V6 In-Service Validation

Figure 4. The Assurance V.

Assurance as Integral and Continuous Process. The movement for quality in the last

decades is motivated by the fact that quality cannot be tested in. Assurance activities are

continuously interwoven with development activities. Taiichi Ohno has coined the term

autonomation to express not to allow forwarding deficient results from one process step further

downstream to other process steps by using tools that have quality checks built in (Ohno 1988).

Equivalently, any systems engineering work product should have passed quality checks before

it is released to serve as a point of reference for downstream engineering activities. Thus,

assurance activities occur everywhere in the V. Some distinct assurance activities are

nevertheless worthwhile to be shown in the V.

Assurance activities have either the focus on the substantiation that system requirements

represent stakeholder needs adequately, or on the demonstration that the system requirements

are implemented correctly and completely, or on the proof that processes are defined and

performed according to the demanded process quality. Here, the first two topics are addressed:

validation and verification. Process assurance cannot be expressed in the V meaningfully.

In some product and service domains, further more specialized assurance processes may be

defined like safety assessment or security assessment. Those processes are not specifically

considered here. They apply some specific methods to satisfy validation and verification

objectives in a certain engineering domain. Consequently, they are implicitly included in the

considerations on validation and verification.

Dedicated Validation Activities. Because stakeholder needs may not be identified

completely, validation will never lead to an exhaustive proof that stakeholder needs are fully

identified and understood completely and correctly. On the other hand, stakeholder satisfaction

results from the fulfillment of stakeholder needs. For these reasons, it is important to integrate

distinct validation steps at multiple points in the overall systems engineering process.

Furthermore, a defensive approach is taken not only to show that stakeholder needs are

satisfied, but also to prove the absence of unintended functions that may have an adverse

impact on humans and the environment.

As shown in Figure 4, Validation Step V1 is concerned with stakeholder requirements. The

requirements text, the corresponding rationale, and existing examples are examined to check, if

the stakeholder requirement is convincing to express a real stakeholder need well.

A similar communication situation occurs when allocated requirements are handed over from

one engineering team to another. The engineering team receiving the allocated requirements is

in a similar situation as when eliciting stakeholder requirements. This Validation Step V2 is

accomplished by applying the same techniques as described above.

In Validation Step V3 the engineering team evaluates, if their design solution is appropriate for

satisfying the stakeholder needs. All three essential defining views – system requirements,

functions, and architectural decomposition – are examined to assess the level of achievable

stakeholder satisfaction. This is a prerequisite before handing over allocated requirements to

the system elements on the next architectural level.

The next validation opportunities arise when design results from lower level system elements

become available and are progressively integrated into a virtual product or service in

Validation Step V4.

Validation Steps V1 toV4 may all be performed before implementation is commenced. They

are very valuable to mitigate the main risk of not achieving stakeholder satisfaction. Model

Based Systems Engineering (MBSE) has the potential to boost the quality of validation results

at this stage significantly and to increase thereby overall systems engineering efficiency.

However, not all assumptions on system requirements may be resolved yet. In this case,

additional validation oriented assurance objectives may be imposed for resolving assumptions

during system integration. As assurance objectives are mainly established for verification, and

as validation and verification purposes are overlapping in most cases, no specific validation

step is shown in Figure 4 for this in order not to capture a single activity twice.

The final validation step (Validation Step V5) during the value stream execution expressed by

the V-model is performed when the overall product or service is actually operated in the real

system environment. Frequently, this is called customer validation. Validation Step V5 is

helpful to overcome initial in-service transition issues, to identify product or service

improvements, and to record stakeholder requirements to be considered in the development of

successor products and services.

Further validation activities may be performed in later system life cycle phases, in Figure 4

indicated as Validation Step V6. They provide hints for further product or service

enhancements and extend the knowledge base on stakeholder needs for future products and

services.

Note that validation with respect to the stakeholder needs on the overall product or service is

not applicable to the implementation level in accordance with the definition of the

implementation level given above.

Dedicated Verification Activities. Verification demands the availability of the integrated

system element, or system, depending on the architectural level the verification is taking place.

This is visualized in Figure 4 by the arrows pointing from right to left. Verification evidence is

generated during system integration by demonstrating compliance with the system

requirements on the basis of the defined assurance objectives. This is the sole representation of

verification in the V. However, to de-risk development continuous verification checks precede

the final verification in the sense of the autonomation principle introduced above.

Verification is applicable to all levels of the system architecture except the system

environment. Of course, verifying the system requirements on the overall system level

demands a representation of the operational environment. This is depicted by the verification

arrow on the overall system level. On the system environment there are no system requirements

to be verified as the system environment goes simply beyond the delivery obligations. This

does not mean that the verification of system requirements on the overall product or service

would need no representation of the system environment, but this is all self-contained on the

overall product or system level.

Iterations in the V-Model: The Dynamic V

Iterations over a single System Element

Iterations over several System Architecture Levels either on the left or the right leg of the V

Iterations over several Systems Architecture Levels including the Implemenation Level

Figure 5. The Dynamic V.

The Necessity to Consider Iterations. Considering iterations in systems engineering is a

valuable response in order to cope with the complexity of product and service development.

Iterations may be pre-planned or event-driven. Mastering both kinds of iterations in an

integrated manner provides agility to the execution of the systems engineering process

(Scheithauer 2012).

Pre-planned iterations may occur due to the life cycle phase definitions of certain life cycle

phase models, or due to incremental and evolutionary development philosophies. Also

pre-planned repair cycles fall into this category when otherwise a waterfall model development

philosophy is followed.

Event-driven iterations occur due to lessons learned during project execution. Lessons learned

may be annoying, if they contain something already known within the organization. Or, they

may reveal something new challenging the design and providing directions for further

opportunities. In principle, pre-planned iterations are also a good means to cope with lessons

learned during development. But similar to high volume mass production in batch mode this

would mean to ignore the efficiency boost from lean thinking in manufacturing and agile

approaches in software engineering that could be adopted to systems engineering. Event-driven

iterations have the potential to enable faster learning, and by that to reduce cumulative

uncertainty and risks (Scheithauer 2012).

When interpreting the V as the overall value stream in product and service development

iterations may be generally indicated as feedback loops in the V as shown in Figure 5

schematically. A single iteration means to jump back to the left until the highest level system or

system element is reached from which on the incorporation of the change needs to start. Thus,

the V indicates the potential impact of each change when progressing to the right according to

the logical sequence indicated by the V. Three distinct categories of iterations can be identified:

(1) Iterations on single system elements, (2) iterations on the left or the right leg of the V, and

(3) Iterations on multiple elements including the implementation level.

Iterations on Single System Elements. One essential prerequisite for effective and efficient

execution of the overall systems engineering value stream represented by the V is the high

quality of work performed on individual system elements in due time. A capability to provide

high quality configuration baselines with a reasonable frequency lays the foundation for high

reactivity within the overall systems engineering value stream. In the end, the system element

with the weakest performance dominates the maximum dynamics achievable for the overall

systems engineering value stream.

For the engineering of individual system elements, this means equivalently that advanced

capabilities to cope with pre-planned and event-driven iterations are of paramount importance

to recover any flaws internal to that system element rapidly without propagating any adverse

impact to other system elements in the system architecture. In turn, it can be concluded that

iterations of system elements are highly welcomed, if they eliminate self-contained

deficiencies without adversely impacting the overall systems engineering value stream. Then,

the classical project management over the whole system architecture facilitated by sound

configuration baselines for handing over information between systems and system elements is

not overloaded with nuisance issues.

For this reason, the feedback loops affecting just one system element either on the left or the

right side of the V are drawn in green in Figure 4. Iterations on the left leg represent iterations

on the system design, especially of system requirements, functions and the architectural

decomposition. Iterations on the right leg may represent changes of any work products not

impacting the system definition handed over to system elements on the next lower level on the

left leg of the V.

Iterations on Left or Right Leg of the V. Iterations affecting several system elements

demand principally a higher effort for performing the feedback loop than changes

self-contained by one system element. They are the classical domain of project management

with agreement processes facilitated by management reviews based on sound configuration

baselines. Especially on the left leg of the V, systems engineering management is the

prevailing discipline for coordinating all the engineering activities that are concurrently

performed on the overall product or service and all the abstract systems below. A capability to

execute feedback loops over the overall product and service and all abstract system elements

rapidly is beneficial for the generation of high quality proposals with no or only a minimum

amount of TBDs left. Due to the management effort, Figure 5 shows this kind of feedback

loops in amber.

Iterations on Multiple System Elements Including the Implementation Level. Whenever

feedback loops cross the implementation level the effort will be high. Consequently, the color

red is chosen in Figure 5. The only exceptions are systems for which the implementation effort

is low like in some software applications. In all other cases, feedback loops of this kind should

be avoided or minimized in number. Incremental development philosophies are usually applied

to control the number of iterations passing the implementation level.

Conclusions

A set of four V-model views is proposed as a means for improved communication in the

systems engineering community and beyond. The basic view defines a standardized system

architecture decomposition emphasizing recursive decomposition principles and the V shape

as representation of the over-arching systems engineering value stream compatible with lean

principles. The development view concentrates on the hand-over of information within the

system architecture. The assurance view shows the corresponding validation and verification

activities. And, the dynamic view depicts the impact of pre-planned and event-driven iterations

on the overall systems engineering value stream.

The standardized system architecture definition shows the system environment as a distinct

layer above the overall product or service. Therefore, system-of-systems engineering is better

expressible in the V explicitly.

The extended definition of the implementation level allows the V to be interpreted recursively

in order to map supply chains typical for sophisticated industrial cultures based on work share,

specialization, and standardization.

It is hoped by the authors that these V-model views become a popular part in the systems

engineering assets.

References

Breidenthal, J. and K. Forsberg 2008. “Core and Off-Core Processes in Systems Engineering,”

February 22. NPO-45745, NASA's Jet Propulsion Laboratory, Pasadena, California;

Received JPL Outstanding Publication award.

Forsberg, K. and H. Mooz 1991. “The Relationship of System Engineering to the Project

Cycle,” Proceedings of the National Council on Systems Engineering (NCOSE)

Conference, Chattanooga, Tennessee, pp. 57-65, October. (Note: This is the first public

presentation of the Vee as developed by Forsberg and Mooz in 1989.

Forsberg, K., H. Mooz, and H. Cotterman 2005. Visualizing Project Management: Models and

Frameworks for Mastering Complex Systems. 3rd Edition. Hoboken, NJ (US): John

Wiley and Sons.

Haskins, C., ed. 2010. Systems Engineering Handbook: A Guide for System Life Cycle

Processes and Activities. Version 3.2. Revised by M. Krueger, D. Walden, and R. D.

Hamelin. San Diego, CA (US): INCOSE.

ISO (International Organisation for Standardisation). 2008. EN ISO 9001-2008. Quality

Management Systems – Requirements.

ISO and IEC (International Organisation for Standardisation and International Electrotechnical

Commission). 2008. ISO/IEC 15288-2008. Systems and Software Engineering –

System Life Cycle Processes.

ISO, IEC and IEEE (International Organisation for Standardisation, International

Electrotechnical Commission, and Institute of Electrical and Electronics Engineers,

Inc.). 2011. ISO/IEC/IEEE 29148-2011. Systems and Software Engineering – Life

Cycle Processes – Requirements Engineering.

Köhler, W. 1947. Gestalt Psychology: The Definitive Statement of the Gestalt Theory. New

York,NY (US): Liveright Publishing Corporation.

McManus, H. L. 2005. “Product Development Value Stream Mapping.” Release 1.0,

Massachusetts Institute of Technology, Lean Advancement Initiative (Cambridge, MA,

US).

Mooz, H., and K. Forsberg 2001. “A Visual Explanation of Development Methods and

Strategies including the Waterfall, Spiral, Vee, Vee+, and V++ Models.” Paper

presented at the 11th INCOSE International Symposium, Melbourne (AU): 1-5 July.

Ohno, T. 1988: Toyota Production System: Beyond Large Scale Production. Boca Raton, FL

(US): CRC Press.

Oppenheim, B. W. 2011. Lean Systems Engineering - With Lean Enablers for Systems

Engineering. Hoboken, NJ (US): John Wiley and Sons.

Scheithauer, D. 2012. "Managing Concurrency in Systems Engineering." Paper presented at

the 22nd INCOSE International Symposium, Rome (IT): 9-12 July.

Womack, J. P., and D. T. Jones 1996 and 2003. Lean Thinking: Banish Waste and Create

Wealth in Your Corporation. New York, NY (US): Free Press.

Biography

Dieter Scheithauer

Dr. Scheithauer, an INCOSE ESEP, studied electrical engineering with special emphasis on

automatic control at the Universität der Bundeswehr München resulting in the degree of a

Diplom-Ingenieur univ. in 1980 and a doctor’s degree (Dr.-Ing.) in 1987. His service as

Technical Officer in the German Air Force ended in 1988. From 1988 to 1999 he was

employed by Industrieanlagenbetriebsgesellschaft GmbH (IABG). He worked in a branch

mainly delivering technical expertise to the German Ministry of Defence and other government

organizations. Throughout his professional career he contributed in various roles to the flight

control system development for major European military aircraft and helicopter programs.

Furthermore, he acted as project manager for unconventional airborne and ground-based

systems. In 1999 he joined the European Aeronautic Defence and Space Company. Since then

he has worked mainly in the field of process engineering. He now holds a position as Senior

Expert Systems Engineering Processes within CASSIDIAN. Convinced of the importance of

systems engineering for the company, he contributed to achieve its high level of recognition by

CASSIDIAN and EADS today.

He is a former president and an honorable member of GfSE – The German Chapter of

INCOSE. He represents CASSIDIAN on the INCOSE Corporate Advisory Board.

Kevin Forsberg

Dr. Forsberg, an INCOSE ESEP, draws on 27 years of industrial experience in System

Engineering, Project, and Proposal Management and 28 years of successful consulting to both

government and industry. He has developed leading industry training programs and has trained

over 9,000 high technology project managers. Training courses co-developed by Dr. Forsberg

have been taught in 39 countries. These courses have also been taught in a number of

universities, including Santa Clara University, Stanford University, University of California,

and American University.

He co-founded the Center for Systems Management (CSM) in 1989. He is currently president

of OGR Systems, Inc., presenting training at many companies in the US and Europe.

Other accomplishments:

 Early member of the Lockheed Corona Project, America’s first successful satellite

 Coauthor of Visualizing Project Management, J. Wiley & Sons (third edition, 2005)

 Coauthor of Communicating Project Management, J. Wiley & Sons, 2002

 Lockheed Program Manager of the Space Station Program (1981-83).

 Awarded the NASA Public Service Medal (1981) “in recognition of his outstanding

technical and managerial contributions to the Space Shuttle Program.” (He was Program

Manager of the Space Shuttle tile project, from research through full-scale production.)

 Awarded the CIA Agency Seal Medallion for excellence in Project Management training,

and in recognition of his pioneering efforts in the field of Project Management (1998).

 Awarded the Pioneer Award for INCOSE (International Council of System Engineering),

jointly with Hal Mooz (2001).

 INCOSE Certified Systems Engineering Professional (CSEP) in 2004; ESEP in 2010

 Life-time Fellow, American Society of Mechanical Engineers (ASME) (1972)

 Associate Fellow, American Institute of Aeronautics and Astronautics (AIAA) (1968)

 Fellow, International Council of Systems Engineering (INCOSE) (2009)

 Member & co-chair, INCOSE Certification Advisory Group (CAG), 2004 to 2010.

 Co-chair of INCOSE Working Group on INCOSE SE Handbook, versions 2a, 3.0, 3.1,

 Author on BKCASE team, and member of six-person steering group

(INCOSE/IEEE/Stevens Institute)

 Over sixty published articles in referred journals and proceedings

Education

 Ph.D., Engineering Mechanics, Stanford University (1961)

 M.S., Engineering Mechanics, Stanford University (1958)

 B.S., Civil Engineering, Massachusetts Institute of Technology (1956)

