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Abstract. The V-model is the most popular iconic illustration within systems engineering. 

Originally derived from the waterfall model to give a notion of a system's architecture, the 

V-model today is used widely in systems engineering training, and for communicating systems 

engineering ideas and concepts in the systems engineering community and beyond. 

The contemporary understanding of the V-model is still based on definitions established more 

than two decades ago. Since then, systems engineering has advanced in directions beyond the 

systems engineering scenarios of the past. Systems-of-systems, systems engineering value 

stream thinking, and systems engineering outreach into commercial sectors challenge the 

current common interpretation of the V-model. It is the intention of this paper to establish a set 

of consistent V-model views integrating central systems engineering concepts and maintaining 

the central role of the V-model for communication within the systems engineering community 

and beyond. 

 

Introduction 

Icons are a powerful means of communication. They ease orientation in public facilities like 

airports, hotels, or train stations. As traffic signs, they help us to drive safely even when we 

take unknown directions. Their shape itself is part of the message. When naming the shapes of 

Figure 1 with the otherwise meaningless terms "omulvo" and "takete" most people will make 

the same choice without hesitation (Köhler 1947). 

 

 

Figure 1. Naming Shapes – "Omulvo" and "Takete" (Köhler 1947). 

 

The most concise icon in systems engineering is the V. Not necessarily the more artistic 

representation shown in the publications of Hal Mooz and Kevin Forsberg (Mooz and Forsberg 

2001; Forsberg, Mooz and Cotterman 2005), but just two lines drawn on a piece of paper or on 

a board as a sketch for expressing systems engineering concepts. But unlike the initial example 

where just a phoneme is correlated with a graphical shape, the V is enriched with all the 



 

  

systems engineering knowledge and experience of the observer. Due to its success, the V is 

used to explain many ideas and concepts in systems engineering. On the downside, 

inconsistencies are diluting more and more the communicative power of the V in systems 

engineering, since many people are creating their own V icons to address their specific 

situation. 

 

It is the objective of this paper to propose a set of consistent V-model views in order to 

maintain the V as the dominant icon to express systems engineering concepts. This includes 

re-visiting the original definition of the V-model (Forsberg and Mooz 1991; Forsberg, Mooz 

and Cotterman 2005) with respect to the advances in systems engineering achieved within the 

last decade. Most notably, the following new concepts introduced to systems engineering have 

an impact on a further evolution of the V-model: (1) the notion of systems-of-systems (Haskins 

2010); (2) value stream thinking in systems engineering (Ohno 1987; Womack and Jones 1996 

and 2003; McManus 2005; Scheithauer 2012); (3) the outreach of systems engineering into 

commercial sectors. 

 

Four consistent V-Model views are introduced by this paper: 

 The Basic V expressing V-model fundamentals (see Figure 2) 

 The Development V (see Figure 3) 

 The Assurance V (see Figure 4) 

 The Dynamic V (see Figure 5) 

The first three views depict the overall systems engineering value stream, while the fourth view 

indicates iterations that may be performed over the whole or over parts of the V-Model. 
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Figure 2. V-Model Fundamentals: The Basic V. 

 

V-Model Legacy 

According to Hal Mooz and Kevin Forsberg, the V-model has been invented twice in the late 

1980's by NASA and in parallel by Kevin Forsberg and Hal Mooz (Forsberg and Mooz 1991). 

The main characteristics of the V-model are: 

 



 

  

 Horizontal layers in the V-Model provide a notion of the hierarchical levels of a system 

architecture with the overall product or service under consideration at the top and with the 

system elements on the implementation level at the bottom. 

 

 The direction from left to right expresses the time line. Usually, sequential milestone events 

structure the time continuum. Thus, the V-model expresses a sequential development 

approach. Other development philosophies are shown by breaking up the V in parts to 

provide examples for incremental and evolutionary development philosophies. 

 

 A vertical line at the “time now” (not shown in the figures) will illustrate the critical 

iterative character of the V model. These iterations are part of the systems engineering 

process models that are not scaled temporally, but rather by events. While important to 

understand that the on-core and off-core activities are part of the heart of the V model, they 

are confusing when incorporated into a simple iconic model. For more detail see the earlier 

papers (Breidenthal and Forsberg 2008; Forsberg, Mooz, and Cotterman 2005). 

 

 Going down on the left leg stands for top-down design. Progress is shown as a continuum 

of generated baselines. 

 

 Proceeding up on the right leg means bottom-up system integration. 

 

V-Model Weaknesses. From a today's point of advanced systems engineering knowledge, of 

accumulated experience and of applying systems engineering beyond its original context, the 

main characteristics of the V-Model may be challenged for the following weaknesses: 

 

 Inventing new products and services deserves engineering activities regarding the 

operational context first. In the details of the V depiction, as well as the various 

architectural frame works (such as DoDAF, MoDAF, NAF) the system environment is 

described as a separate architectural layer above the overall product or service finally 

delivered to customers. Issues such as user needs and system affordability drive the 

evolution of the system solution. However the V icon does not show this. 

 

 The meaning of the lowest architectural level at the peak of the V-Model is not well 

defined. General criteria for stopping the architectural system decomposition are as vague 

as the definition of the term implementation. Considering an industrial culture based on 

work-share and specialization in terms of commercial-off-the-shelf and non-development 

items only falls somewhat short about the complexity of industries. 

 

 Interpreting the left-to-right direction as time line supports pure sequential systems 

engineering concepts, but introduces some twists for expressing re-work and iterative 

approaches. First, design iterations over the whole or parts of the system architecture can 

rarely be achieved at a single point in time. Re-working the design and creating updated 

configuration baselines for affected systems and system elements interfere considerably 

with development progress. As noted above, the activities off the core of the V are a vital 

part of the real work and value imbedded in the V model (Breidenthal and Forsberg 2008). 

The vertical iterations support iterative and agile development concepts, but the resulting 

model is no longer a simple iconic Vee, and so it is not elaborated upon here. Second, the 

need for re-work of the design due to system integration results is hidden despite the 

tremendous challenges for managing corrective design and implementation activities in 



 

  

order to maintain consistent configuration baselines of all affected systems and system 

elements. Third, the linear mapping of the time line to life cycle phases disregards the 

repetition of some engineering activities in several life cycle phases. And at forth, mapping 

incremental or evolutionary development approaches to the V-model results in the 

distortion of the iconic V without providing a generalized view representing all real-world 

variations of pre-planned and event-driven iterations. 

 

 

System Architecture Considerations 

The system architecture of an overall system, e.g. products and services delivered to customers, 

is defined for engineering purposes. The system architecture is developed to partition the 

engineering effort according to a wide range of considerations including mastering system 

complexity, involved application domains, and organizational capabilities and boundaries. In 

Figure 2, the basic V-model is shown with the architectural system levels shown in horizontal 

layers. The different architectural layers are described below. 

 

Note that the terms system and system element are used below in a recursive pattern. A system 

is decomposed into system elements on the next level that again can also be designated as 

systems. In contradiction, ISO/IEC 15288-2008 favors a tree metaphor where the system 

elements are the ultimate leaves of the tree (ISO and IEC 2008). 

 

The System Environment. The upmost entry point of a system architecture is the system 

environment in which the overall system is operated. The system environment is the part of the 

surrounding world considered when engineering the overall system. In the end, customer and 

user satisfaction depends on operating the overall system in its surrounding world. A number of 

engineering activities are performed on the system environment. It has to be decided what is 

taken as part of the system environment, and what is neglected leading to the definition of the 

outer boundaries of the system environment. The system environment has to be understood in 

terms of functions and architecture. Innovative and competitive ideas for capability 

sustainment and enhancement beneficial to current and future customers have to be identified 

to generate promising future business cases. The operational requirements allocated to the 

overall system have to be developed. And, mission effectiveness and the system efficiency 

including affordability of the overall system's operation in the surrounding world have to be 

validated. 

 

The Overall System. The overall system constitutes the product or service to be delivered 

finally to the customers. It is designed to satisfy the operational requirements. The design is 

expressed in terms of consistent and complementary system requirement, functional and 

architectural views. Continuously performed validation activities provide the confidence that 

stakeholder satisfaction is most likely. And, the verification of the overall integrated system 

provides the evidence that system requirements are met and that customer contracts are 

fulfilled. 

 

Abstract Systems. System elements resulting from the overall system's decomposition are 

abstractions of portions of the overall system. Therefore, they are designated as abstract 

systems. Abstract system elements may be scoped according to functional considerations, or 

following other segregation principles. The engineering of each abstract system element 

demands a specific cooperation of multiple engineering disciplines with higher levels of 



 

  

specialization on lower architectural system levels. Thus, the decomposition of the system 

architecture leads to team structures and responsibility assignments within the engineering 

organization. Engineering teams responsible for abstract systems actively contribute to satisfy 

the stakeholder needs on the overall system. They are involved in the elicitation of stakeholder 

requirements as they may understand some stakeholder needs inherited from higher level 

systems in more detail and occasionally their design decisions may lead to additional 

stakeholder requirements. Sometimes abstract system elements may have a corresponding 

representation within the product structure as a particular physical entity. 

 

For each abstract system element, the allocated requirements are interpreted in course of the 

design. An abstract system element is defined by consistent and complementary requirement, 

functional and architectural views. The methods and practices applied for the development of a 

particular system element are selected according to the specific application domain. The 

hand-over to the system elements on the next lower architectural level is accomplished again 

by allocation of requirements that are feasible to be engineered and implemented on lower 

architectural levels. All abstract system elements are engineered having the stakeholder 

satisfaction with the overall system in its operational environment in mind, thus contributing to 

the quality management goal of customer satisfaction (ISO 2008). 

 

The number of abstract system levels in each branch of the system architecture may vary. Each 

abstract system element has to add value to the overall system design in an effective and 

efficient manner. In some cases, the overall system may be directly broken down into system 

elements on the implementation level. 

 

The Implementation Level. In contrast to the engineering of the abstract system elements, the 

engineering of the system elements on the implementation level sets the focus on the system 

requirements allocated to them without challenging the definition of the overall product or 

service and its abstract system elements. They are not concerned anymore with the stakeholder 

needs on the overall system. In many cases, system elements on the implementation level are 

procured as standard or customized parts from other industrial organizations. For example, a 

servo-hydraulic actuator is a system element on the implementation level for an aircraft 

manufacturer. For the actuator supplier, the actuator is the overall product. The same is true for 

the company providing a shut-off valve to the actuator manufacturer. Thus, the V-Model 

becomes re-entrant recursively. In other cases, system elements engineered in-house may be 

deemed to be on the implementation level like for example some electronic circuitry or basic 

software code. But be aware about the reliance on supplies from other industries for procuring 

for example electronic components or adequate compilers. In a sophisticated industrial culture 

it may hard or nearly impossible to identify the true peak of the V. 

 

The V-Model as Value Stream 

The idea of anticipating the V-model as a value stream is obvious. However, interpreting the 

left-to-right direction as timeline undermines this interpretation. The lean principle for flow 

(Oppenheim 2011) includes the absence of backflow. Showing vertical iterations on the left leg 

of the V to be performed at a single point in time, and hiding possible rework and redesign on 

the right leg as background details (Forsberg, Mooz, and Cotterman 2005) demands some 

twists in the reasoning to claim compatibility with all lean principles. This issue does not exist 

when the left to right direction is interpreted as logical sequence for a single iteration on the 

overall systems engineering value stream that may be performed on the whole or parts of the V 



 

  

as later explained in the context of the Dynamic V (see Figure 5). This overall value stream 

then may put the major emphasis on the hand-over of information between systems and their 

system elements as shown in the Development V (see Figure 3) 

Stakeholder Needs and Stakeholder Satisfaction. Stakeholder needs and stakeholder 

satisfaction themselves are shown off-side the V as they are not direct products of the systems 

engineering activities. The entry point for systems engineering is the elicitation of stakeholder 

requirements. Traditionally, the terms stakeholder needs and stakeholder requirements are used 

interchangeably in systems engineering (Haskins 2010). This position is currently changing. 

ISO 29148 (ISO 2011) is aware of the difference between stakeholder needs and stakeholder 

requirements, but still does not provide a proper definition of the term stakeholder needs. 

 

It is the goal in systems engineering to satisfy all stakeholders concerned with the overall 

system over its whole system life cycle. However, the whole system is invented for those 

stakeholders that are concerned with the overall system during the in-service phase. For this 

reason, stakeholder satisfaction is indicated on the right of the V on the architectural level of 

the system environment in order to concentrate on essentials. 

 

Logical Sequence. As stated above, interpreting the left-to-right direction as timeline prevents 

the V from being interpreted as value stream according to lean principles (Womack and Jones 

1996; Oppenheim 2011). This deficiency is cured when the left-to-right direction is interpreted 

as logical sequence. Any re-work may then be expressed by moving back to the left. Thus, it 

becomes visible at which stage of the engineering process the re-work has to start and which 

system elements may be impacted by the changes. 

 

Following this interpretation, the V expresses the overall systems engineering value stream. Of 

course, the engineering of each system element follows an engineering value stream on its own 

when widely managed independently. It is better to draw those value streams not in the shape 

of a V as they do not express an architectural decomposition. In order to avoid overlaps 

between the overall systems engineering value stream represented by the V and the engineering 

value streams for developing particular system elements, the following V-model views 

concentrate on global characteristics of the overall value stream. 
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Figure 3. The Development V. 

 



 

  

Development Activities in the V-Model: The Development V 

From Stakeholder Needs to Stakeholder Requirements. Stakeholders have needs, but they 

are rarely conscious about all their needs. Stakeholders have expectations taken for granted. 

Consequently, they will miss to talk about some important basic needs. Instead they will 

emphasize felt deficiencies of current solutions and their wishes delighting them, if they would 

become true. A systems engineer without knowledge of the stakeholder's domain of expertise 

may be limited in the capability to transform all relevant stakeholder needs into stakeholder 

requirements. In general, it may be better to accept that stakeholder needs may not always be 

identified than postulating the identity of stakeholder needs and stakeholder requirements. 

 

At the outset, stakeholder requirements on the system environment level have to provide a 

comprehensive view on the capabilities from which the operational requirements for the 

overall product or service are deduced. However, further stakeholder requirements may be 

derived for the overall product and service as well as for all the abstract system elements. 

Design decisions may lead to the identification of new stakeholders, additional needs from 

known stakeholders, and already known needs may be better understood by engineers from 

particular domains in charge for engineering specific logical system elements. Of course, it 

may be assumed that the need and the effort for stakeholder requirement elicitation will fade 

out with increasing architectural decomposition of the overall system into abstract system 

elements. 

 

The Requirement Cascade. On the left leg of the V, the information hand-over between a 

system and its system elements on the next lower architectural level is facilitated by the 

allocation of requirements defined by the engineering team in charge of developing these 

requirements for the next lower architectural level. The engineering teams in charge of 

developing the system elements will interpret the allocated requirements. They will then 

generate consistent and complementary system requirement, functional and architectural 

views. On one hand, they have to ensure that they satisfy the expectations communicated by the 

requirements allocated to them. On the other hand, they also have to take care that their design 

solution is feasible and implementable on all lower architectural levels. Finally, requirements 

will be allocated to the system elements on the next lower architectural level. Note that the 

requirements allocated from the system environment to the overall system are commonly 

designated as operational requirements. 

 

The hand-over of allocated requirements needs to be tightly controlled. First, the design of the 

next upper level system needs to have achieved a known level of maturity. This does not 

necessarily mean that the design has to be complete. 

 

Second, a consistent configuration baseline of the next upper level system has to exist. Here, a 

consistent configuration baseline is characterized by a set of referenced work products 

describing the system requirement, functional and architectural views, and the allocated 

requirements assigned to all the system elements at the next lower architectural level. All 

content needs to be traceable and free of conflicts beyond the stated omissions and issues as 

knowledgeable at the particular point in the systems engineering process. 

 

And third, appropriate agreements of the involved engineering teams are made, for example in 

the course of management reviews. At least three mandatory parties are involved in the 

agreement process. The originators of the allocated requirements taken as input for the system 

design have to assess, if their expectations are fulfilled by the system design. The engineering 



 

  

design team of the particular system has to justify and defend their design decisions. The 

engineering teams responsible for the system elements on the next lower architectural level 

have to evaluate, if they have understood the requirements allocated to them and if the task is 

feasible for them. 

 

System Integration Planning. When designing the overall product or service, or any abstract 

system element, the scope for system integration becomes clear as well. An overall system 

integration concept considering the whole system architecture of the overall system or service 

is generated. The demands for system integration of particular system elements are elaborated. 

This includes the generation of assurance objectives as an engineering activity subsumed to be 

represented by the left leg of the V. In order to provide a sound basis for preparing system 

integration, the hand-over between system design and system integration needs to be controlled 

by consistent configuration baselines again. 

 

System integration planning may not only be performed on a per system element basis. In 

many cases, it is worthwhile to define an overall system integration concept defining rules on 

which level of the system architecture evidence for the fulfillment of certain categories of 

system requirements is generated most efficiently. Although important, this consideration is 

not addressed explicitly in the development V-model view. 

 

Considering the lead time needed to provide all the system integration environments system 

integration should start early. All the preparatory work on system integration is represented by 

the right leg of the V as it does not interfere with the requirement cascade. 

 

 

The System Integration Cascade. The actual system integration is dependent on the recursive 

bottom-up hand-over of integrated system elements up to the overall product or service. This 

hand-over is shown on the right leg of the V. In cases in which the overall product or service is 

one of a kind, the integration of the overall product or service in the system environment may 

be performed as a systems engineering activity. In all other cases, it is unlikely that it is a 

systems engineering responsibility to perform the transition into the in-service phase. 

 

As a minimum, the following controls are necessary for evolving the system integration 

cascade: First, the integration activities on the respective system element need to have achieved 

a certain level of known maturity before they are actually integrated into the next upper level 

system. Second, the integrated system element has to be identified by a consistent 

configuration baseline with all omissions and deficiencies clearly stated in order to avoid 

damages and nuisance work when the integration of the next upper level system is commenced. 

And third, appropriate agreements of the involved engineering teams have been made, for 

example in the course of management reviews. 

 



 

  

Assurance Activities in the V-Model: The Assurance V 
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Figure 4. The Assurance V. 

 

Assurance as Integral and Continuous Process. The movement for quality in the last 

decades is motivated by the fact that quality cannot be tested in. Assurance activities are 

continuously interwoven with development activities. Taiichi Ohno has coined the term 

autonomation to express not to allow forwarding deficient results from one process step further 

downstream to other process steps by using tools that have quality checks built in (Ohno 1988). 

Equivalently, any systems engineering work product should have passed quality checks before 

it is released to serve as a point of reference for downstream engineering activities. Thus, 

assurance activities occur everywhere in the V. Some distinct assurance activities are 

nevertheless worthwhile to be shown in the V. 

 

Assurance activities have either the focus on the substantiation that system requirements 

represent stakeholder needs adequately, or on the demonstration that the system requirements 

are implemented correctly and completely, or on the proof that processes are defined and 

performed according to the demanded process quality. Here, the first two topics are addressed: 

validation and verification. Process assurance cannot be expressed in the V meaningfully. 

 

In some product and service domains, further more specialized assurance processes may be 

defined like safety assessment or security assessment. Those processes are not specifically 

considered here. They apply some specific methods to satisfy validation and verification 

objectives in a certain engineering domain. Consequently, they are implicitly included in the 

considerations on validation and verification. 

 

Dedicated Validation Activities. Because stakeholder needs may not be identified 

completely, validation will never lead to an exhaustive proof that stakeholder needs are fully 

identified and understood completely and correctly. On the other hand, stakeholder satisfaction 

results from the fulfillment of stakeholder needs. For these reasons, it is important to integrate 

distinct validation steps at multiple points in the overall systems engineering process. 

Furthermore, a defensive approach is taken not only to show that stakeholder needs are 

satisfied, but also to prove the absence of unintended functions that may have an adverse 

impact on humans and the environment. 



 

  

 

As shown in Figure 4, Validation Step V1 is concerned with stakeholder requirements. The 

requirements text, the corresponding rationale, and existing examples are examined to check, if 

the stakeholder requirement is convincing to express a real stakeholder need well. 

 

A similar communication situation occurs when allocated requirements are handed over from 

one engineering team to another. The engineering team receiving the allocated requirements is 

in a similar situation as when eliciting stakeholder requirements. This Validation Step V2 is 

accomplished by applying the same techniques as described above. 

 

In Validation Step V3 the engineering team evaluates, if their design solution is appropriate for 

satisfying the stakeholder needs. All three essential defining views – system requirements, 

functions, and architectural decomposition – are examined to assess the level of achievable 

stakeholder satisfaction. This is a prerequisite before handing over allocated requirements to 

the system elements on the next architectural level. 

 

The next validation opportunities arise when design results from lower level system elements 

become available and are progressively integrated into a virtual product or service in 

Validation Step V4. 

 

Validation Steps V1 toV4 may all be performed before implementation is commenced. They 

are very valuable to mitigate the main risk of not achieving stakeholder satisfaction. Model 

Based Systems Engineering (MBSE) has the potential to boost the quality of validation results 

at this stage significantly and to increase thereby overall systems engineering efficiency. 

 

However, not all assumptions on system requirements may be resolved yet. In this case, 

additional validation oriented assurance objectives may be imposed for resolving assumptions 

during system integration. As assurance objectives are mainly established for verification, and 

as validation and verification purposes are overlapping in most cases, no specific validation 

step is shown in Figure 4 for this in order not to capture a single activity twice. 

 

The final validation step (Validation Step V5) during the value stream execution expressed by 

the V-model is performed when the overall product or service is actually operated in the real 

system environment. Frequently, this is called customer validation. Validation Step V5 is 

helpful to overcome initial in-service transition issues, to identify product or service 

improvements, and to record stakeholder requirements to be considered in the development of 

successor products and services. 

 

Further validation activities may be performed in later system life cycle phases, in Figure 4 

indicated as Validation Step V6. They provide hints for further product or service 

enhancements and extend the knowledge base on stakeholder needs for future products and 

services. 

 

Note that validation with respect to the stakeholder needs on the overall product or service is 

not applicable to the implementation level in accordance with the definition of the 

implementation level given above. 

 

Dedicated Verification Activities. Verification demands the availability of the integrated 

system element, or system, depending on the architectural level the verification is taking place. 

This is visualized in Figure 4 by the arrows pointing from right to left. Verification evidence is 



 

  

generated during system integration by demonstrating compliance with the system 

requirements on the basis of the defined assurance objectives. This is the sole representation of 

verification in the V. However, to de-risk development continuous verification checks precede 

the final verification in the sense of the autonomation principle introduced above. 

 

Verification is applicable to all levels of the system architecture except the system 

environment. Of course, verifying the system requirements on the overall system level 

demands a representation of the operational environment. This is depicted by the verification 

arrow on the overall system level. On the system environment there are no system requirements 

to be verified as the system environment goes simply beyond the delivery obligations. This 

does not mean that the verification of system requirements on the overall product or service 

would need no representation of the system environment, but this is all self-contained on the 

overall product or system level. 

 

Iterations in the V-Model: The Dynamic V 

 

Iterations over a single System Element

Iterations over several System Architecture Levels either on the left or the right leg of the V

Iterations over several Systems Architecture Levels including the Implemenation Level  

Figure 5. The Dynamic V. 

 

The Necessity to Consider Iterations. Considering iterations in systems engineering is a 

valuable response in order to cope with the complexity of product and service development. 

Iterations may be pre-planned or event-driven. Mastering both kinds of iterations in an 

integrated manner provides agility to the execution of the systems engineering process 

(Scheithauer 2012). 

 

Pre-planned iterations may occur due to the life cycle phase definitions of certain life cycle 

phase models, or due to incremental and evolutionary development philosophies. Also 

pre-planned repair cycles fall into this category when otherwise a waterfall model development 

philosophy is followed. 

 

 



 

  

Event-driven iterations occur due to lessons learned during project execution. Lessons learned 

may be annoying, if they contain something already known within the organization. Or, they 

may reveal something new challenging the design and providing directions for further 

opportunities. In principle, pre-planned iterations are also a good means to cope with lessons 

learned during development. But similar to high volume mass production in batch mode this 

would mean to ignore the efficiency boost from lean thinking in manufacturing and agile 

approaches in software engineering that could be adopted to systems engineering. Event-driven 

iterations have the potential to enable faster learning, and by that to reduce cumulative 

uncertainty and risks (Scheithauer 2012). 

 

When interpreting the V as the overall value stream in product and service development 

iterations may be generally indicated as feedback loops in the V as shown in Figure 5 

schematically. A single iteration means to jump back to the left until the highest level system or 

system element is reached from which on the incorporation of the change needs to start. Thus, 

the V indicates the potential impact of each change when progressing to the right according to 

the logical sequence indicated by the V. Three distinct categories of iterations can be identified: 

(1) Iterations on single system elements, (2) iterations on the left or the right leg of the V, and 

(3) Iterations on multiple elements including the implementation level. 

Iterations on Single System Elements. One essential prerequisite for effective and efficient 

execution of the overall systems engineering value stream represented by the V is the high 

quality of work performed on individual system elements in due time. A capability to provide 

high quality configuration baselines with a reasonable frequency lays the foundation for high 

reactivity within the overall systems engineering value stream. In the end, the system element 

with the weakest performance dominates the maximum dynamics achievable for the overall 

systems engineering value stream. 

 

For the engineering of individual system elements, this means equivalently that advanced 

capabilities to cope with pre-planned and event-driven iterations are of paramount importance 

to recover any flaws internal to that system element rapidly without propagating any adverse 

impact to other system elements in the system architecture. In turn, it can be concluded that 

iterations of system elements are highly welcomed, if they eliminate self-contained 

deficiencies without adversely impacting the overall systems engineering value stream. Then, 

the classical project management over the whole system architecture facilitated by sound 

configuration baselines for handing over information between systems and system elements is 

not overloaded with nuisance issues. 

 

For this reason, the feedback loops affecting just one system element either on the left or the 

right side of the V are drawn in green in Figure 4. Iterations on the left leg represent iterations 

on the system design, especially of system requirements, functions and the architectural 

decomposition. Iterations on the right leg may represent changes of any work products not 

impacting the system definition handed over to system elements on the next lower level on the 

left leg of the V. 

 

Iterations on Left or Right Leg of the V. Iterations affecting several system elements 

demand principally a higher effort for performing the feedback loop than changes 

self-contained by one system element. They are the classical domain of project management 

with agreement processes facilitated by management reviews based on sound configuration 

baselines. Especially on the left leg of the V, systems engineering management is the 

prevailing discipline for coordinating all the engineering activities that are concurrently 



 

  

performed on the overall product or service and all the abstract systems below. A capability to 

execute feedback loops over the overall product and service and all abstract system elements 

rapidly is beneficial for the generation of high quality proposals with no or only a minimum 

amount of TBDs left. Due to the management effort, Figure 5 shows this kind of feedback 

loops in amber. 

 

Iterations on Multiple System Elements Including the Implementation Level. Whenever 

feedback loops cross the implementation level the effort will be high. Consequently, the color 

red is chosen in Figure 5. The only exceptions are systems for which the implementation effort 

is low like in some software applications. In all other cases, feedback loops of this kind should 

be avoided or minimized in number. Incremental development philosophies are usually applied 

to control the number of iterations passing the implementation level. 

 

Conclusions 

A set of four V-model views is proposed as a means for improved communication in the 

systems engineering community and beyond. The basic view defines a standardized system 

architecture decomposition emphasizing recursive decomposition principles and the V shape 

as representation of the over-arching systems engineering value stream compatible with lean 

principles. The development view concentrates on the hand-over of information within the 

system architecture. The assurance view shows the corresponding validation and verification 

activities. And, the dynamic view depicts the impact of pre-planned and event-driven iterations 

on the overall systems engineering value stream. 

 

The standardized system architecture definition shows the system environment as a distinct 

layer above the overall product or service. Therefore, system-of-systems engineering is better 

expressible in the V explicitly. 

 

The extended definition of the implementation level allows the V to be interpreted recursively 

in order to map supply chains typical for sophisticated industrial cultures based on work share, 

specialization, and standardization. 

 

It is hoped by the authors that these V-model views become a popular part in the systems 

engineering assets. 
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