

Systems Engineering Value Stream Modelling

Dieter Scheithauer Dr.-Ing., INCOSE ESEP

EMEA Systems Engineering Conference 2014

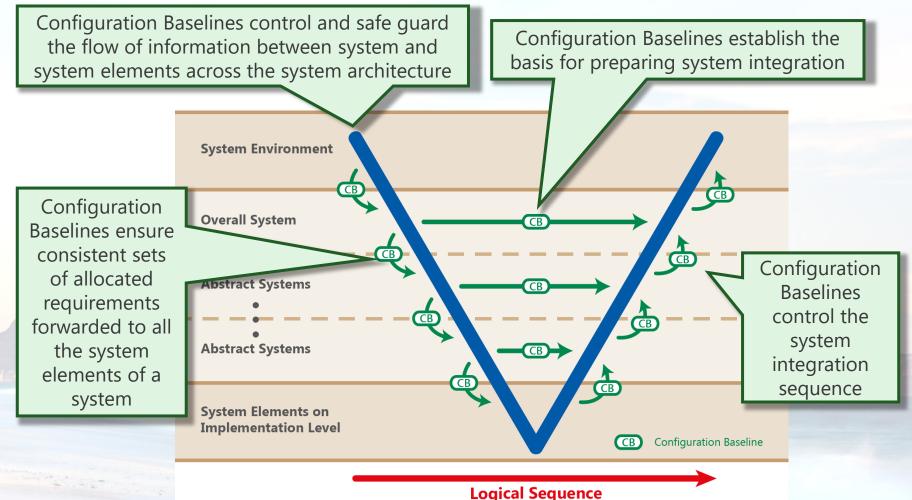
"SYSTEMS ENGINEERING: EXPLORING NEW HORIZONS"

27 - 30 OCTOBER 2014 - CAPE TOWN, SOUTH AFRICA

Content

- Introduction
- The Precedence of the Value Stream Approach
- The Role of Configuration Management
- Definition of a Work Product Generation Sequence
- Conclusions

Content



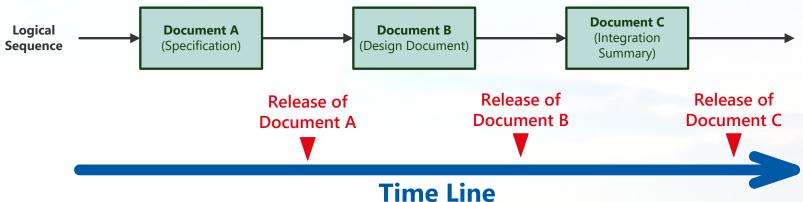
- Introduction
- The Precedence of the Value Stream Approach
- The Role of Configuration Management
- Definition of a Work Product Generation Sequence
- Conclusions

The Flow of Configuration Baselines in the Overall Systems Engineering Value Stream

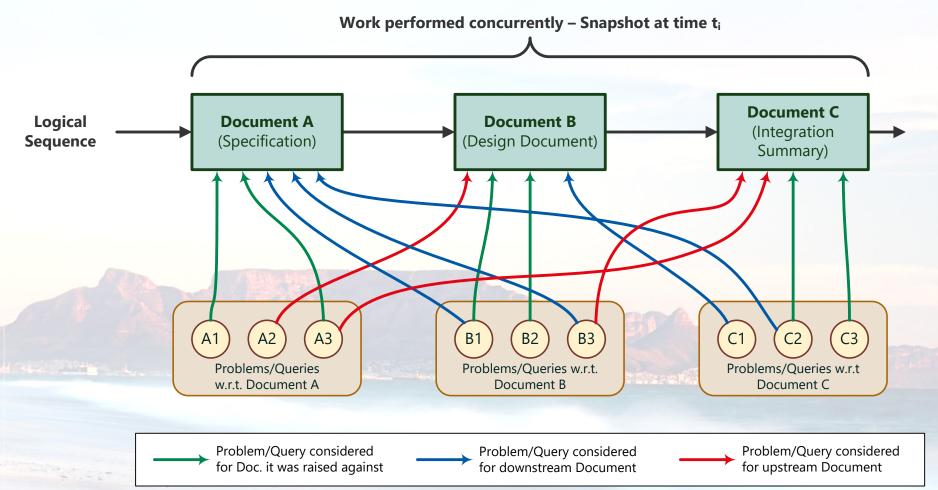
Work Product Generation Sequences

- Work Product Generation Sequences model the value streams for the development of each system or system element in a system architecture
- For ensuring consistent high-quality configuration baselines, it is important to focus the systems engineering management on the evolving configuration baselines of all systems and system elements up from project start
- A value stream based approach outperforms other systems engineering management techniques, especially
 - document centred approaches, and
 - process oriented approaches

Content

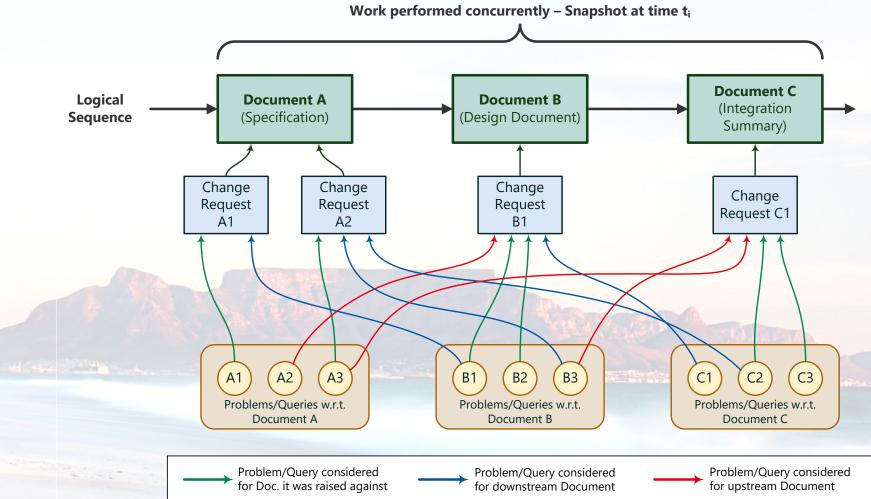

- Introduction
- The Precedence of the Value Stream Approach
- The Role of Configuration Management
- Definition of a Work Product Generation Sequence
- Conclusions

A Non-Practical Theory

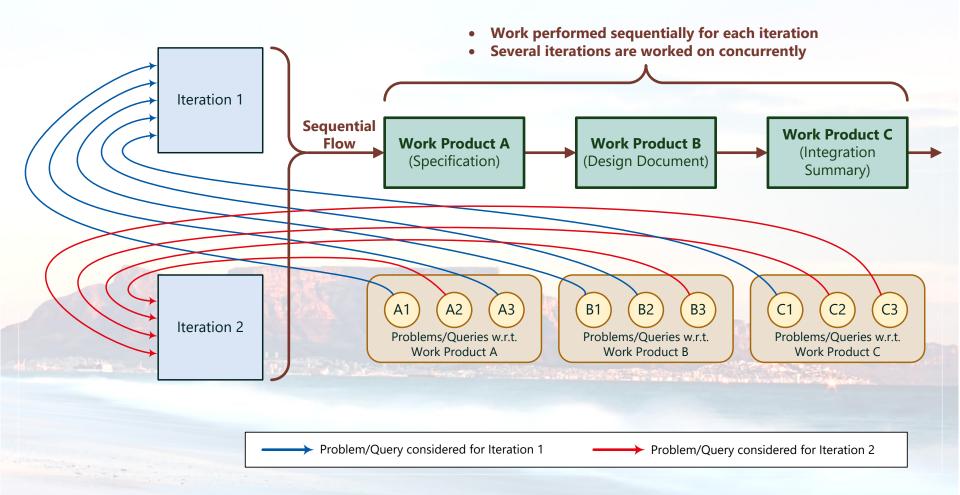


- A Work Breakdown Structure defines tasks to write documents A, B and C
- Responsible authors for compiling each document are appointed
- Due the expected content the documents have to be generated according to a logical sequence
- The tasks from the Work Breakdown Structure are directly translated into a Gant Chart defining delivery milestones for each document
- Project managers control adherence to the milestones

The Document Centred Approach



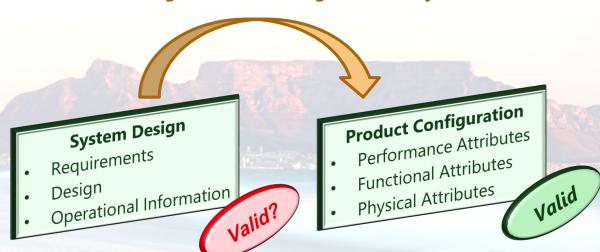
The Process Oriented Approach



The Value Stream Based Approach

Content

- Introduction
- The Precedence of the Value Stream Approach
- The Role of Configuration Management
- Definition of a Work Product Generation Sequence
- Conclusions


The Role of Configuration Management

Configuration Management

A technical and management process for establishing and maintaining consistency of a product's functional and physical attributes with its requirements, design and operational information throughout its life *EIA-649-B, 2011.*

Establishing and Maintaining Consistency

What happens to configuration management, if requirements, design and operational information themselves are inconsistent

The Scope of Systems Engineering

Applying the Systems Engineering Process

- Development Sub-Processes
- Assurance Sub-Processes
- Technical Management Sub-Processes

Systems engineering needs configuration management in order to conclude in high-quality and consistent technical solutions

- Systems engineering needs the full range of configuration management support beyond just Configuration Identification of final results, e.g.
 - Change control
 - > Configuration Status Accounting
 - Configuration Verification

Terminology

Configuration Baselines

- describe the overall content and status of a system or system element,
- > refer to Work Products containing the actual information, and
- > are released along the system life cycle

Work Products

- contain information needed downstream the system life cycle,
- describe what the system is, and
- > represent the value generated

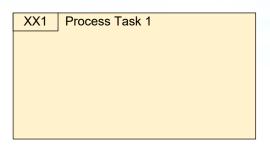
Supporting Data

- contain information explaining why a system has evolved as is, and
- provide important evidence for ensuring appropriate process quality

Content

- Introduction
- The Precedence of the Value Stream Approach
- The Role of Configuration Management
- Definition of a Work Product Generation Sequence
- Conclusions

Process Definition Model


- Four distinct architectural levels
- Each level featuring specific semantics
- Supporting a well balanced process definition

Process Tasks

XX2 Process Task 2

- Process Tasks are concerned with generating and maintaining an individual work product or a group of work products with the same input dependencies and output usages
- Process Tasks are also used to cover some evaluation and conceptual work that are not associated with a specific work product

Elementary Process

XX Process	Name		
XX1 Process	Task 1	7	
	XX2 Process T	ask 2	
	AAZ FIOCESS I	ask Z	

- Elementary Processes group Process Tasks that have a close relationship with manifold dependencies
- Only released versions of Work Products are allowed to cross Elementary Process boundaries

Process Group

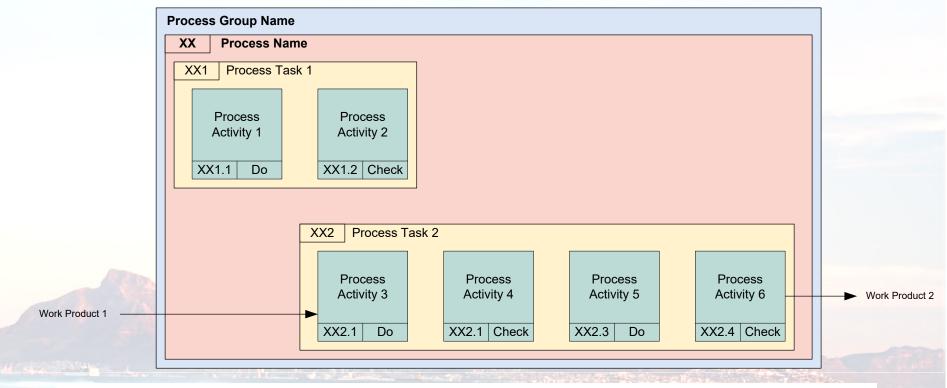
Process Group Name						
XX Process Name						
XX1						
	XX2 Process Task 2					

- Process Groups group Elementary Processes due to organisational considerations
- Process Groups may be nested in arbitrary depth, if this adds value to the process definition

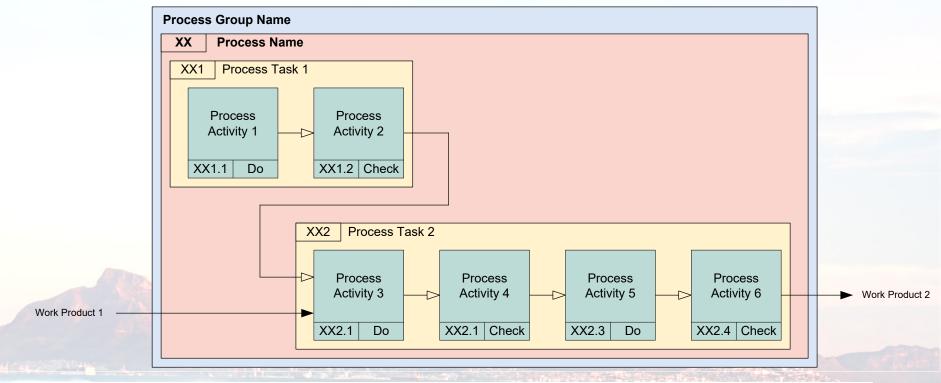
Process Activity

Process Group Name								
XX Process Name								
XX1 Process Task 1								
Process Activity 1 XX1.1 Do	Process Activity 2 (X1.2 Check							
XX2 Process Task 2								
	Process Activity 3	Process Activity 4	Process Activity 5	Process Activity 6				
X	(X2.1 Do	XX2.1 Check	XX2.3 Do	XX2.4 Check				

- Process Activities are exclusively either concerned with do or check activities
- Process Activities provide important low level process definitions, but are not contributing to the definition of the Work Product Generation Sequence itself

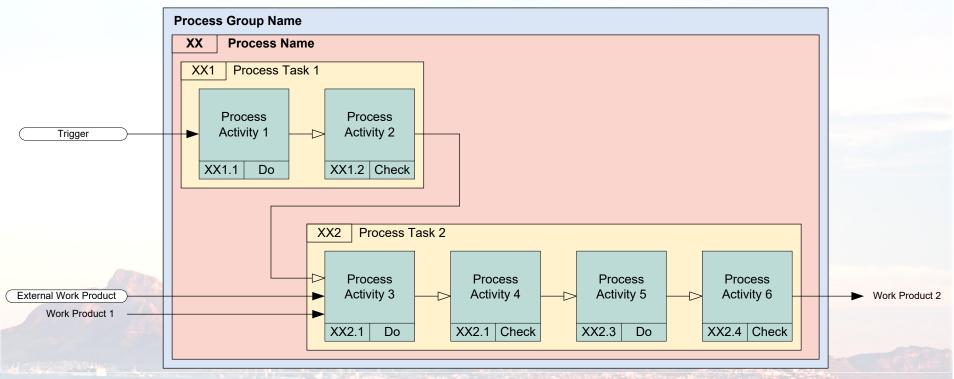


Work Product Flows



- Work Product Flows represent released versions of Work Products
- Work Product Flows connect Process Tasks hosted by different Elementary Processes

Dependencies


- Dependencies define the release sequence of Work Products
- Dependencies connect Process Tasks within an Elementary Process and Process Activities within a Process Task

External Inputs

- External inputs represent either Work Products from other Work Product Generation Sequences, or
- Feedback information triggering further iterations

Process Task Attributes

XX1

Process Task

Standard Attributes

- Identifier
- Name
- Responsible
- Description
 - Content of Work Product

- Work Product
 - Prepared By
 - Approved By
 - Released By
 - Authorised By
 - Agreed By

Elementary Process Attributes

XX

Process

Standard Attributes

- Identifier
- Name
- Responsible
- Description

- Objectives
- Input
 - Work Products or
 - External Inputs
- Output
 - Work Products

Process Group Attributes

Process Group

Standard Attributes

- Identifier
- Name
- Responsible
- Description

- Change Control Board
 - Description
 - Triggers
 - Chairman
 - Change Controller
 - Members

Process Activity Attributes

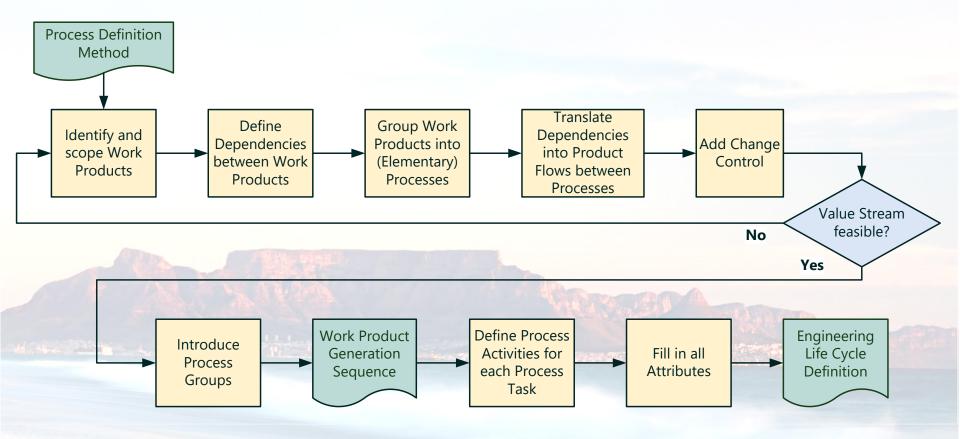
Process Activity

XX1.1

Do

Standard Attributes

- Identifier
- Name
- Responsible
- Description


- Participants
- Inputs
- Outputs
- Applied Standards
- Applied Tools

Establishing a Work Product Generation Sequence

Content

- Introduction
- The Precedence of the Value Stream Approach
- The Role of Configuration Management
- Definition of a Work Product Generation Sequence
- Conclusions

Conclusions

- A complete and consistent value stream approach to systems engineering demands
 - > controlling the flow of configuration baselines according to the Overall Systems Engineering Value Stream, and
 - controlling the evolution of consistent high-quality configuration baselines for each system and system element according to appropriate Work Product Generation Sequences
- Configuration Management is demanded for controlling the flow according to Work Product Generation Sequences beyond the traditional scope of Configuration Management
- The proposed process definition model with distinct description levels leads to a well balanced process definition

END

Systems Engineering • Training • Coaching • Consulting

Dieter Scheithauer

Dr.-Ing., INCOSE ESEP

Breitensteinstr. 26 83727 Schliersee Germany

Phone: +49 (0) 80 26 - 97 68 00 Fax: +49 (0) 80 26 - 97 67 99 Mobile: +49 (0) 170 - 23 50 23 4

www.hitseng.eu • dieter.scheithauer@hitseng.eu

EMEA Systems Engineering Conference 2014

"SYSTEMS ENGINEERING: EXPLORING NEW HORIZONS"

27 - 30 OCTOBER 2014 - CAPE TOWN, SOUTH AFRICA

