
Introducing Systems Engineering Views in Product
Lifecycle Management

Frédéric Autran
CASSIDIAN

1 Boulevard Jean Moulin
78996 Elancourt - France

frederic.autran@cassidian.com

Dieter Scheithauer
CASSIDIAN

Rechliner Str.
85077 Manching - Germany

dieter.scheithauer@cassidian.com

Copyright © 2012 by EADS. Published and used by INCOSE with permission.
Permission granted to H·I·T·S Engineering to publish and use.

Abstract. Product Lifecycle Management demands to integrate all engineering data of a
product or service in order to provide full traceability of dependencies between information of
different types and from various sources. Current Product Data Management solutions set the
focus mainly on data representing physical items. Version Management applications
originating from software engineering environments are frequently used also for storing
systems engineering data. However, this data management landscape is not adequate for the
central role of systems engineering driving both, the development of physical system elements
and of system elements implemented by software.
This paper describes how all product data may be integrated with adequately emphasizing the
role of systems engineering. It is based on principles EADS is establishing for an EADS-wide
standardized but versatile approach appropriate for the wide range of products and services
offered by the EADS Divisions Airbus, Astrium, Cassidian and Eurocopter. Currently the
defined and agreed concepts are further progressed and implemented.

Introduction
In times with less sophisticated systems engineering methods, Product Lifecycle Management
(PLM) was mainly accomplished by configuring documents and generating
configuration baselines. The ISO standard on configuration management ISO 10007 (ISO
2003) still allows this as a valid approach for configuration management.

In two domains handling information by just documents proved to be insufficient, and a more
detailed level of configuration control materialized. The drawing set for a product consists of
a number of individual drawings that are each configured separately at first. Similar
solutions arose for managing source code files that together represent a complete software
product.

From both origins the advance in information technology has led to powerful tools for
supporting Product Data Management (PDM) on one hand, or Software Version Management
(SVM) on the other. For more details on the evolution of tools see the book Implementing
and Integrating Product Data Management and Software Configuration Management
(Crnkovic, Asklund and Persson Dahlqvist 2003). PDM tools cover structural, mechanical
and electrically engineering. They support assembly and in-service maintenance. SVM
tools concentrate on software, but are also used in a systems engineering context.

The configuration management capabilities of PDM and SVM tools evolved into different
directions. For example, PDM tools are targeted to master product variants. In software
engineering, concurrency of development activities demands branching and merging
capabilities applied to textual data. Consequently, SVM tools excel in this.

Of course, as more information is expressed in structured data formats, today further specific
data management tools exist like for requirements management. Due to the narrow focus of
these tools they are disregarded here as they miss the configuration management capabilities to
support PLM as a whole.

Another trend is the standardization of systems engineering data representation for example
ISO 10303-AP233 (ISO 2010) or ReqIF (OMG 2011). But such common data interchange
formats are still not applied on a large scale. Therefore no assumption was made regarding the
systems engineering data representation to be used.

PLM Integrating Development and Assembly: The fragmentation in PDM and SVM tools is
a burden for systems engineering to provide an integrated overall PLM. For explanation,
Figure 1 shows schematically the complete product evolution covering engineering and
assembly activities.

Engineering Value Stream D (Software)

Engineering Value Stream C (Hardware)

Engineering Value Stream B (Equipment)

Engineering Value Stream A (Structure, Mech., Elect.)

Engineering Value Stream S (System)

Engineering Value Streams Software

Engineering Value Streams for Hardware

Engineering Value Streams for Equipment

Engineering Value Streams for Structure, Mech., Elect.

Engineering Value Streams for Logical Syst. Elements

Product

Element

CI A
(P/N)

Product

Element

CI B
(P/N)

Product

Element

CI C
(P/N)

Product

Element

CI D
(P/N)

Product

(S/N 01)

Product

(S/N 02)

AssemblyEngineering

Design and Build

Standards

Legend: Work ProductProcess Task CI Configuration Item P/N Part Number S/N Serial Number

Figure 1. Product Evolution

In engineering, coupled, but widely independently managed value streams exist for the
development of
• logical system elements on the upper levels of the system architecture
• system elements dealing with structure, mechanics and electrics down to the

implementation level
• installed hardware like sensors, computers and actuators
• software elements implementing a major portion of the overall product functionality

In assembly, individual products are built taking all the product elements needed from the
storage. The solution space defining valid product configurations is defined by design and
build standards. The individual product elements are identified by part numbers. Generally,
they are outcomes of the engineering value streams on the implementation level. In contrast,
the design and build standards are merely a result of the systems engineering value streams
dealing with the logical system elements, although this information may be provided by
drawing sets according to traditional practices.

From this overall view, classical PDM is mainly concerned with supporting assembly. It
controls the engineering value streams for structural, mechanical and electrical development.
To some extent also engineering value streams for equipment and hardware development may
be controlled by PDM as well. Software elements are considered to be delivered as completed
configuration items, but their engineering is managed somewhere else. In a similar way, the
evolution of the design and build standards is only partly controlled by PDM. It is assumed that
the systems engineering value streams work properly under an external management scheme.

These practices limit the overall PLM capabilities of classical PDM since the importance of
systems engineering for the generation of design and build standards is disregarded. For
enabling control of the complete product evolution in a unique context, systems and software
engineering environments need to be integrated into classical PDM applications for an efficient
PLM.

The Vision: Enable integrated Product Lifecycle Management of all product data by proper
integration of systems engineering with Product Data Management solutions.

To accomplish this vision, a particular working group has been established in the context of an
EADS-wide effort for PLM harmonization (Mondon 2009). This working group is staffed with
systems engineering specialists from all EADS divisions in order to define a systems
engineering interface policy for EADS. The solution combines a standardized approach
providing the flexibility to adequately support the wide range of products and services
developed, manufactured and maintained by EADS.

This paper explains the principles and the proposed approach to better integrate systems
engineering into PLM. On the basis of an abstracted view on data management, an integration
concept is defined. The fundamental decision is to allow multiple systems engineering
environments to be integrated with a single Master Product Definition application. The
objectives applicable to the Master Product Definition are derived. It is explained how some
pitfalls associated with the chosen approach can be avoided. Finally, the standardized data
model for representing systems engineering information in the Master Product Definition is
described.

Application Architecture for Data Management
Traditionally, systems engineering tools are bundling a user interface with a proprietary data
model. The integration of multiple systems engineering tools becomes a daunting task as the
number of possible tool interfaces increases following a quadratic function with the number of
tools. E.g., for integrating the n-th tool, n-1 additional interfaces need to be considered. To
segregate the application data processing from the data management as shown in Figure 2 leads
to a more scalable solution. Each tool just communicates with the common data repository by
dedicated import/export interfaces. Data exchange formats like ISO 10303-AP233 (ISO 2010)
and ReqIF (OMG 2011) are principally supportive to define the interfaces.

The data management is further split up in two layers. One is concerned with the evolution of
individual work products, e.g. the essential artifacts generated by the systems engineering
process. The other deals with the evolution of system releases capturing all system elements up
to the overall product or service. The reasons for this differentiation will become clear with the
following description of each layer and their association with the systems engineering
environment domain and the Master Product Definition domain.

Figure 2. Application Architecture for Data Management

Application Data Processing. The application data processing layer comprises the user
interfaces and all the underlying processing for user interaction. Editing tools are used to
convert human thoughts into digital data. Build tools operate on digital data generating further
digital data like compilers or other transformations do. Analysis and test tools are applied to
evaluate the quality. For this purpose, they process already existing digital data, and they
generate further digital data containing the evaluation results. Of course, commercial systems
engineering tools may satisfy functionality of more than just one category. All three kinds of
mentioned tools alter data in the data management repositories.

Compared to that, data representation tools access the data management repositories in
read-only mode. Data representation tools may extract data from several data repositories to
seamlessly integrate them for browsing, navigation, and configuration status accounting. They
are well suited to expose systems engineering result to the world outside the systems
engineering team as they do not need to include all the intricacies of a user interface dedicated
to the editing and manipulation of systems engineering data.

Evolution of Individual Work Products. In this layer, the content of all work products, and
optionally further supporting data are stored. When data formats are directly readable and
interpretable by humans, long-term storage and archiving can be ensured without bothering
about obsolescence of any application data processing tool.

For managing concurrency in systems engineering, branching and merging capabilities are
important. Maximum control is achieved when two different changes can be generated in
isolation followed by later merging both changes consecutively into the main trunk. Usually,
SVM tools provide appropriate functionality to accomplish this.

Evolution of System Releases. This data management layer hosts all the relations between all
the work products. This means that the work product content of each configuration baseline is
defined. As far as systems engineering is concerned, aggregating the information up for all
system elements over the whole system architecture leads ultimately to the design and build
standards.

At least per product or service, the evolution of system releases should be managed in one
repository only in order to maximize the efficiency of PLM. Of course, it makes also sense to
strive for an enterprise-wide solution where the evolution of the system releases of all products
and services offered by the enterprise are managed. Standardization and re-use of system
elements over the whole enterprise including product line management may then be managed
within a single application.

Systems Engineering Environment Domain. In the following, we refer to the term systems
engineering environment in order to denominate any tools or tool suites used for performing
systems engineering. In its modest form, a systems engineering environment may consist of
one or more non-integrated application data processing tools. Information may be stored in tool
proprietary data formats.

At the other end of the spectrum, a fully integrated systems engineering tool suite with a
common data repository controlling the evolution of work products as well as the evolution of
product releases. However, as not all engineering is systems engineering, it is not expected that
a systems engineering environment will handle all product data except in rather exceptional
cases. It is anticipated that a systems engineering environment is optimized to serve the
systems engineering team in their development effort.

Master Product Definition Domain. The Master Product Definition is anticipated as the
unique environment holding all the information about the evolution of system releases. It
maintains the information throughout the whole system architecture and covers all engineering
domains. Furthermore, it controls all the data handed over to manufacturing.

All authorized users of the Master Product Definition are potential stakeholders for the systems
engineering information in its repository. This demands the availability of systems engineering
information that is valuable and meaningful to this wider community. The systems engineering
information needs to be presented in a way understandable and interpretable by the ordinary
user. Some complexity, non-avoidable in a systems engineering environment, but only relevant
for the systems engineering team should not be exposed in the Master Product Definition.

Integration of Multiple Systems Engineering Environments
Multiple Systems Engineering Environments. When discussions on the systems engineering
integration into PLM started within the working group, it became evident immediately that we
would have to deal with multiple systems engineering environments. A vision for selecting
specific systems engineering tools and integrating them deeply within the Master Product
Definition would be an illusion. Needs were to diverting for a number of reasons.

The expectations on systems engineering tools vary with the system life cycle phase. For
example, during conceptual design the aim is to find an optimum solution for a given problem.
Main criteria comprise effective mission performance and affordability in the presence of
uncertainty and risks. In contrast, full consistency and completeness of the system definition is
the expected outcome of a definition phase. Systems engineering tools that support the
definition phase well may be a burden for the conceptual design phase where completeness is
not the goal.

The wide range of products and services leads to different demands on the systems engineering
environment. For some projects, the definition of an appropriate system architecture may be
the main challenge. For others, the system architecture may be more or less pre-defined and
functional and performance fine-tuning are the main topics to work on.

Huge variations in the duration of system life cycles are a further EADS-specific issue.
Especially in the aeronautic field, legal and regulatory obligations demand the capability to
maintain the fleet in airworthy conditions for the full in-service life. Experience gained by now
leaves little confidence that systems engineering tools will be supported for so long by tool
vendors. On the other hand, migrating the systems engineering data every time data formats or
tools are changing is no real option due to economical reasons. Thus, it is a fact that various
systems engineering environments for newly developed systems and legacy products have to
be supported concurrently.

It is recognized that in complex industrial organizations like an extended enterprise with
partner and multi-tier supplier organizations, PLM is the foundation of the cooperation
(Messadia, Eynard and Sahraoui 2011). But this does not prevent from facing variations of the
systems engineering environment. Due to high competition and contractual constraints every
organization will seek for continuous improvements in their processes to keep or to increase
their profits.

Integration Objectives. Figure 3 illustrates the interaction of the Master Product Definition
with various systems engineering environments. For integrating the systems engineering
information, the Master Product Definition provides a Systems Engineering Interface (SEI)
Data Model. A consistent use of the SEI Data Model needs to be ensured independently of the
original systems engineering environments by which the data is generated. Five usage modes
provide guidance for filling up the data structures according to the needs of a particular
program or project.

Systems

Engineering

Systems

Engineering

Systems

Engineering

Sys
te

m
s Technical

Operational

EADS Harmonised

Specific to
Division

Business Unit

Partner

Supplier

Programme

Life Cycle Phase

Systems Engineering Environments

SEI Data Model

SEI Data Model

SEI Usage Modes

SEI Policy

Master

Product

Definition

Figure 3. Integration of Multiple Systems Engineering Environments

The Systems Engineering Interface is designed to satisfy the following objectives:
• To make systems engineering data available to all authorized users of the Master Product

Definition Repository including
o those who have no access to the systems engineering environment, and
o those who do not need to cope with the intricacies of the systems engineering

environment.
• To establish relations of systems engineering data with other data stored in the Master

Product Definition Repository in order to provide a global view.
• To provide efficient and comfortable audit trails over all product data stored in the

Master Product Definition Repository including systems engineering data for future
investigations.

• To enable an enterprise-wide archiving solution for systems engineering data
independently from a particular systems engineering environment.

• To allow shutting down the original systems engineering environment used for design
after system development has been completed instead of maintaining it for the
development of potential future updates.

• To facilitate the import and export of systems engineering data between the Master
Product Definition Repository and various current and future systems engineering
environments on the basis of a common data model.

Avoiding Synchronization Pitfalls. The chosen architecture to integrate multiple systems
engineering environments leads to a duplication of data stored in the systems engineering
environment repository and the Master Product Definition Repository. Some rules need to be
established in order to avoid inconsistencies within a single repository and between both
repositories.

The first rule is to control the application data processing for certain data in one environment
only. In a very sophisticated environment this would clearly be the systems engineering
environment for all systems engineering data. Under more realistic conditions, the systems
engineering environment may lack some functionality provided by the Master Product
Definition. Thus, some systems engineering data may be generated or further processed by the
Master Product Definition.

The second rule is to export only mature systems engineering data from the systems
engineering environment to the Master Product Definition. In this instance mature means two
things. The quality of the data has been evaluated. And, the data may be used as a point of
reference for the work of other users of the Master Product Definition. This rule avoids
inconsistent states of immature data linked to other objects in the Master Product Definition.

The third rule is closely coupled with the second. In order to enhance concurrent engineering
capabilities export cycles of systems engineering data should be short. For the systems
engineering activities, this means that process capabilities for managing iterations performed
concurrently are available and are applied.

The fourth and final rule forbids the export of systems engineering data for which editing is
controlled by the Master Product Definition to a systems engineering environment. Otherwise,
inconsistent links could be created when systems engineering information is exported back to
the Master Product Definition Repository. The information within the Master Product
Definition may have further evolved meanwhile. However, there is one exception to this rule:
A systems engineering environment repository may be initialized with data from the Master
Product Definition Repository before commencing development activities in the particular
systems engineering environment.

The Systems Engineering Interface Data Model
It is the main purpose of the SEI Data Model to publish systems engineering information for
the benefit of all authorized users of the Master Product Definition. As a consequence, systems
engineering data may be linked to other data stored in the Master Product Definition
Repository for achieving overall PLM. Although the SEI Data Model is intended to initialize
systems engineering environments, it does not provide dedicated data structures for all specific
features of particular systems engineering tools, e.g. of presentation attributes and storage
schemes.

Usage Modes and Their Dependencies. Not all systems engineering efforts will populate the
complete SEI Data Model with data depending on the particular needs. However, in order to
ensure a consistent view within the Master Product Definition, usage modes are defined to
provide guidance for which purposes and under which conditions the sub-sets of the SEI Data
Model shall be used. Figure 4 shows the five usage modes and indicates their dependencies.

Elementary

Defining

Views

Mode 1: Controlling Configuration Baselines, Work Products and Supporting Data

Mode 2: System Product Structure Management

System

Architecture

Figure 4. Usage Modes

Usage Mode 1, "Controlling Configuration Baselines, Work Products and Supporting Data",
satisfies basic configuration management needs for compliance with legal and regulatory
obligations. Its application is mandatory. All other usage modes are built on top of Usage
Mode 1.

Usage Modes 2 to 4 are providing the architectural, functional, and requirement views
essential for requirements engineering and system design. Usage Mode 2, "System Product
Structure Management", is of use whenever several system elements are developed by loosely
coupled, but widely independently managed value streams. It enables the control of any
concurrent engineering practices between those value streams. Usage Mode 3, "Functional
Breakdown Recording", is not intended to create a separate product structure in parallel to the
system product structure. Instead it maps the result of the functional analysis for the related
system element. Usage Mode 3 becomes increasingly valuable, if Usage Mode 4 is applied
also. Usage Mode 4, "Requirements Management", adds the representation of requirements
and traceability as individual entities to the SEI Data Model. Thus, detailed impact analysis
over the whole system product structure and other data linked to it is enabled for requirements.
In conjunction with Usage Mode 3, it becomes visible which requirements are relevant for
which function and sub-function.

Usage Mode 5, "Engineering Value Stream Mapping", is only dependent from Usage Mode 1.
Its purpose is to control the evolution of a system element when iterative development
practices are applied.

Systems Engineering Interface Data Model Class Diagram. Figure 5 shows a class diagram
depicting the SEI Data Model. In the following the object classes and their purpose are briefly
described. The object classes are assigned to specific usage modes as shown by different colors
used for each usage mode.

Work ProductSupporting Data

Process Task

Invariant Node

System Block

System Block Technical Solution

Invariant Node

Variable Configuration Node

Product Technical Solution

System Configuration
Baseline

Requirement Set

Requirement

Traceability Matrix

Part

System Function
Trace

Functional
Specification

* 1

*

*

1

0..1

1

*

1

*
1

*

1

0..1

*

*

1

*

* 1*

11 1
*

*

1

*

1

*

*

1.
.*

*

*
1

1

1.
.*

1..*

*

*

*

*
*

1
*

*

0.
.1

1

*

1

**
*

*

*

*

*

0..*

*

0.
.1

*

*

**

*

0..1

*

1

0.
.1

*
1

*

1
*

*1

*

1

1

*

1
*

precedes
1

0..1

comprises

1

*

precedes1

0..1

supports*

*

supports

*

*

triggers *

*

triggers

*

*

results

0..*

*

results

1

1.
.*

is
 d

ec
om

po
se

d
by*

0..1

co
nt

ai
ns

0.
.1

*

is
 s

at
is

fie
d

by1.
.*

*

bu
ilt

 fr
om

*
*

described by

1

*

su
pp

or
te

d
by

1

*

is
 d

ec
om

po
se

d
by

*

0.
.1

co
nt

ai
ns0.

.1
*

has for product solution

1

*bu
ilt

 fr
om

*
*

de
sc

rib
ed

 b
y

1
*

implements *

*

is defined by

1

*

co
lle

ct
s

*

*

in
cl

ud
es

1

*

allocated to

*

*

co
nt

ai
ns

1
*

traces to* 1

bu
ilt

 fr
om

1..*

*

pe
rf

or
m

s

1
*

br
ea

ks
 d

ow
n

*
1

supported by

1

XOR

XOR

in
cl

ud
es

1

*

ha
s

om
is

si
on

*

traces to

*

1

traces from
*

1

traces from

* 1

ga
th

er
s

1
*

traces from

*

1

traces from

*

1

in
cl

ud
es

1

*

traces to

*

1

traces to

*1

Figure 5. SEI Data Model

Usage Mode 1: Controlling Configuration Baselines, Work Products and Supporting
Data. Three object classes are associated with Usage Mode 1: System Configuration
Baselines, Work Product and Supporting Data.

Work Products contain the engineering value generated. They have to be kept up-to-date and
are designated for being referenced by System Configuration Baselines. Examples for Work
Products include all artifacts assumed by ISO-10007 (ISO 2003) as product configuration
information like specifications, design documents etc., plus the assurance results like test
reports and safety assessment results. The content of Work Products may be stored in various
files with different formats ranging from readable documents to tool proprietary data formats.
All artifacts that are not Work Products are called Supporting Data. They are of a more
temporary nature and are valid only in the context of the Work Products they are contributing
to. Examples for Supporting Data include all change control records, trade-off studies, review
comments and responses, and communication records like letters, meeting minutes, and
e-mails. While Work Products tell what the system is, Supporting Data provide all the hints
why a system has evolved to its current state. As far as this is helpful to analyze later
improvement suggestions, problems or accidents, Supporting Data should be kept. The
distinction of these two categories of information was first proposed in an earlier paper
(Scheithauer and Schindler 2000) for two reasons: improving the efficiency of managing life
cycle data, and enabling the definition of engineering value streams (Scheithauer 2012).

System Configuration Baselines may fulfill a number of purposes in order to serve as a point of
reference comprising a consistent set of several Work Products. Thus, they may support any
management review for investment decisions or for assessing, if objectives of an investment
have been achieved. On a lower technical scale System Configuration Baselines may for
example be defined to control the test readiness of individual test procedures. Considering all
the information stored in the Master Product Definition Repository, System Configuration
Baselines may furthermore be utilized for continuously monitoring their evolution and the
identification of the delta for achieving an associated quality gate.

Usage Mode 2: System Product Structure Management. The System Product Structure
captures a system's architecture. The overall system and every system element on any
architectural level are represented by two object classes: System Block, and System Block
Technical Solution. The System Block is generated by the systems engineering team in charge
of the upper level system. It stands for the requirements allocated to the system element. On the
basis of the allocated requirements, the System Block Technical Solution is defined in terms of
system requirements, system functions and the architectural breakdown to the system elements
on the next lower level. When a System Block Technical Solution represents an item in the 3D
world, it needs to be linked to the corresponding Product Technical Solution that exists outside
the SEI Data Model.

As described, each system element is represented in the SEI Data Model by two objects. This
enables variant management and re-use. A System Block may refer to more than one System
Block Technical Solution.

A further object class, Invariant Node, may be used to map a pre-defined product structure.
Such a system product structure may result from a concept phase. In the concept phase, a
high-level system architecture may be defined without any detailed work commenced on the
individual system elements. Another purpose may be the mapping of system breakdown codes
of a standardized system breakdown. This is common practice in aviation for maintenance
purposes, for example ATA Specification 100 (ATA 1999).

Usage Mode 3: Functional Breakdown Recording. The central object class of Usage
Mode 3 is called System Function. It represents a function or sub-function. The trees of nested
functions and sub-functions are intended to record the functional decomposition performed for
a particular system element. The functional decomposition may go much deeper than the
decomposition into system elements on the next architectural level in order to generate
appropriate understanding and the evidence for the reasonability of the architectural
decomposition.

A set of top level functions is assembled as a Functional Specification object. A Functional
Specification is designated to be included in a Work Product. In conjunction with Usage
Mode 4, traces to requirements and parts may be established.

Usage Mode 4: Requirements Management. Usage Mode 4 is dedicated to detailed
requirements management information. Individual Requirements may be bundled to
Requirement Sets that are then linked to other objects, namely Work Products, or in case of
allocated requirements, to a System Block. Traceability information may either be contained in
Traceability Matrices or may be expressed as explicit relations between requirements.
Requirement Sets and Traceability Matrices are linked to those Work Products that represent
their content. Furthermore, individual requirements may be linked to Parts that exist outside the
SEI Data Model.

Usage Mode 4 offers the foundations for performing Product Lifecycle Requirement
Management (Carlsson and Strandberg 2009). In conjunction with Usage Mode 3, the relations
between System Functions and Requirements support the generation of functional based test
cases with coincidently creating the evidence for a requirements based demonstration of
compliance. In conjunction with Usage Mode 2, the relation between a system block and its
allocated requirements allows to reflect the cascade of requirements and the link with the
design activity, providing a way to manage the "engineering sandwich", composed of
subsequent layers of models and requirements (Dick and Chard 2004).

Usage Mode 5: Engineering Value Stream Mapping. The single object class associated with
Usage Mode 5 is named Process Task. It represents the process task level of the hierarchical
process model introduced by an earlier paper (Scheithauer and Schindler 2000). Process Tasks
connect all Work Products with trigger/result links to build up the work product generation
sequence. To some extent also Supporting Data may be included in a work product generation
sequence (Scheithauer 2012). Especially, configuration control records may be used to express
the front loading of the value stream.

A Process Task generally stands for the activities performed in order to generate a particular
version of a Work Product. The supports relation between the Process Task and the
contributing Supporting Data defines the validity context of the Supporting Data.

Conclusion
The considerations presented in this paper lead to a sustainable as well as versatile solution for
integrating systems engineering into an overall Product Lifecycle Management solution. The
main benefits of the proposed approach lie in four areas.

At first, the Master Product Definition holds all the systems engineering information to fulfill
the stated objectives. All systems engineering data and the links to other product data are
traceable using standard features of the Master Product Definition. No additional tools are
required in principal. However, powerful data representation applications will usually serve
comprehensive read-only views supporting the interpretation of the data stored in the Master
Product Definition repository.

At second, the data model of the systems engineering interface sets a sustainable standard for
representing the systems engineering information. It is comparably simple. Authorized users of
the Master Product Definition that are not systems engineering specialists have not to bother
with the intricacies of a systems engineering authoring environment.

At third, flexibility is gained by a modular concept in two directions. Usage modes are to be
selected according to actual program rules or project needs with an impact on the actual
capabilities for information tracing in the Master Product Definition. In the other direction, a
further evolution of systems engineering methods and corresponding suitable systems
engineering environments is not constrained. Changes to the systems engineering environment
have no impact on the data model of the systems engineering interface or the stored systems
engineering data in the Master Product Definition.

At fourth, the modular concept allows also the coexistence of several systems engineering
environments connected to a single Master Product Definition. Legacy programs may stick to
their traditional systems engineering environments while emerging programs may select a high
sophisticated systems engineering environment applying leading edge methods and tools. In
the context of complex organizational set-ups like a supply chain, some degrees of freedom are
gained for all the systems engineering teams in an extended enterprise. When traceability over
the whole system architecture is maintained by a single Master Product Definition, suppliers
may be allowed to rely on their in-house systems engineering capabilities and systems
engineering environment.

Despite all the listed benefits, it finally should be noted that the approach presented does not
define a terminal state for the inclusion of systems engineering into Product Lifecycle
Management. It is rather the starting point for further integration of the classical product data
management domain into an overall consistent and efficient systems engineering process.

References

ATA (Air Transport Association of America) 1999. ATA Specification 100 - Specification for

Manufacturers' Technical Data.

Carlsson U., Strandberg T. 2009. "Product Lifecycle Requirement Management (PLRM) – a

through life information management challenge." Paper presented at the annual PDT
Europe conference, Versailles, France, 18-19 November.

Crnkovic I., Asklund U., Persson Dahlqvist A. 2003. Implementing and integrating product

data management and software configuration management. Norwood, MA (US) Artech
House.

Dick J., Chard D. 2004. "The Systems Engineering Sandwich: Combining requirements,

models and design." White paper, Telelogic.

ISO (International Organisation for Standardisation) 2003. ISO 10007. Guidelines for

configuration management.

——— 2010. ISO 10303-233. Automation systems and integration - Product data

representation and exchange – Application Protocol 233 - Systems engineering.

Messadia M., Eynard B., Sahraoui A.E.K 2011. "PLM as a tool for supporting industry

collaboration." Report N° 11339, LAAS Toulouse, France.

Mondon, J.Y. 2009. "PHENIX - The EADS Programme for PLM Processes, Methods & Tools

Harmonization." Paper presented at the annual PDT Europe conference, Versailles, France,
18-19 November.

OMG (Object Management Group) 2011. ReqIF - Requirements Interchange Format.

Scheithauer D., Schindler A. 2000. "A Standardisation Concept for Non-Standard

Development Projects." Paper presented at the EuSEC 2000, Munich, Germany,
September 13th – 15th.

Scheithauer, D. 2012. "Managing Concurrency in Systems Engineering." Paper presented at

the 22nd INCOSE International Symposium, Rome (IT): 9-12 July.

Biography
Frédéric Autran is Systems Engineering Senior Expert in Cassidian (an EADS company). He
has an engineer degree from Ecole Centrale de Paris (1984). After 5 years in development of
CASE tools, he acted for 8 years as a consultant for the French Ministry of Defense and
contributed to the building of the semantic interoperability framework for the various French
Army C3I systems. He then joined EADS in 1997 to set up the management of interoperability
among systems composing the new command and control system for the French Air Force, and
introduced the System Engineering principles of ANSI/EIA632 in this programme. Since
2000, he is involved in the deployment of systems engineering in EADS, from process
definition to project coaching. In the frame of the PLM Harmonization Center, he currently
leads the “PLM4SE” group harmonization projects that defines the interface between Systems
Engineering activities and the Master Product Definition. In 2005, he created and chaired until
beginning of 2009 the System of Systems and Complex Systems working group of AFIS
(French chapter of INCOSE). He is INCOSE Certified Systems Engineering Professional since
August 2009.

Dieter Scheithauer studied electrical engineering with special emphasis on automatic control
at the Universität der Bundeswehr München resulting in the degree of a Diplom-Ingenieur
univ. in 1980 and a doctor's degree (Dr.-Ing.) in 1987. His service as technical officer in the
German Air Force ended in 1988. Over his professional career he contributed in various roles
to the flight control system development for major European military aircraft and helicopter
programs. He acted as project manager for the development of unconventional airborne and
ground-based systems. In 1999 he joined the European Aeronautic Defence and Space
Company. Since then he has mainly worked in the field of process engineering. Today he holds
a position as Senior Expert Systems Engineering Processes within Cassidian.
He is a former president and a honorable member of GfSE – The German Chapter of INCOSE.
He represents Cassidian on the INCOSE Corporate Advisory Board. And, he is an INCOSE
Expert Systems Engineering Professional.

